Description: Mehrere tausend Gletscherseen sind durch die beschleunigte Gletscherschmelze in den Hochgebirge der Erde entstanden, von denen einige rasch an Volumen zunehmen. Vereinzelt kommt es immer wieder zu unvorhergesehenen Dammbrüchen mit teils katastrophalen Folgen für die talabwärts siedelnde Bevölkerung. Die Abflussspitzen solcher Gletscherseeausbrüche oder GLOFs (glacier lake outburst floods) können meteorologische Fluten lokal um ein Vielfaches übersteigen, und eventuell durch anhaltendes Wachstum von Gletscherseen in Zukunft noch höher werden. Die Gefährdung, oder Eintretenswahrscheinlichkeit, eines GLOFs ist jedoch weitestgehend unbekannt, weil bisher möglicherweise nur die größeren, schadensreichen Fluten dokumentiert wurden. Dieser Forschungslücke wollen wir begegnen, indem wir die räumliche und zeitliche Verteilung von Gletscherseen und deren Ausbrüche systematisch untersuchen. Unser Ziel ist es, durch die Erstellung von Inventaren von Gletscherseen und GLOFs zu quantifizieren, wie sich die GLOF-Gefahr zwischen 1985 und 2020 verändert hat. Unsere Untersuchungsregion sind die Gebirge des Pacific Northwest (NW-Amerika). Die dortigen Gletscher hatten in den vergangenen beiden Jahrzehnten eine der höchsten Schmelzraten weltweit. Jedoch blieb das Wachstum und Ausbrüche der zumeist eis- und moränen-gedämmten Seen regional nahezu unerforscht. Wir werden automatisch Gletscherseen aus Landsat-Satellitenbildern in mehreren Zeitschritten ab Mitte der 1980er Jahre kartieren. Aus diesen Seeninventaren und klimatischen, glaziologischen und morphologischen Variablen werden wir Bayes‘sche Modelle lernen, um die Entstehung von Gletscherseen vorhersagen zu können. Plötzlich auftretende Sedimentverfrachtungen unterhalb von Seen können auf bisher unerkannte GLOFs hinweisen, welche wir aus Landsat-Bildern automatisch detektieren werden. Diese Ereignisse werden wir mit verfügbaren Abflusszeitreihen und Feldarbeit an zwei ausgewählten Gletscherseen validieren werden. Somit erhalten wir ein regional konsistentes Inventar von GLOFs, aus dem wir ableiten können, wie stark sich deren Raten und Magnituden in den letzten 35 Jahren verändert haben. Schließlich werden wir Zeitreihen aus gemessenen und simulierten GLOF-Abflüssen zusammenführen, sodass wir die Jährlichkeit eines GLOFs abschätzen können. Mit Hilfe eines nicht-stationären Extremwertmodells werden wir zeigen, wie sich die Gefährdung durch GLOFs in den letzten Jahrzehnten verändert hat und wie sie sich bei anhaltender Gletscherschmelze verändern könnte. Wir sind zuversichtlich, dass unsere computer-gestützte Arbeit die Veränderungen der GLOF-Gefährdung vom Einzugsgebiet bis zur lokalen Ebene zuverlässig aufzeigen wird. Wir werden unsere Modelle frei zugänglich machen, was für Entscheidungsträger und Regionalplaner angesichts einer wachsenden Bevölkerung und Ressourcengewinnung im Pacific Northwest von Bedeutung sein wird.
Types:
SupportProgram
Origins:
/Bund/UBA/UFORDAT
Tags:
Seen
?
Gletschersee
?
Kartierung
?
Dammbruch
?
Gletscher
?
Hydrogeologie
?
Gletscherschwund
?
Geographie
?
Einzugsgebiet
?
Hydrochemie
?
Limnologie
?
Siedlungswasserwirtschaft
?
Zeitreihe
?
Sediment
?
Hochgebirge
?
Ressourcenabbau
?
Naturgefahr
?
Hydrologie
?
Gebirge
?
Kommunalebene
?
Eintrittswahrscheinlichkeit
?
Integrated Water Resources Management
?
Integrierte Wasserressourcen-Bewirtschaftung
?
Physical Geography
?
Urban Water Management
?
Water Chemistry
?
Region:
Brandenburg
Nordrhein-Westfalen
Bounding boxes:
13.01582° .. 13.01582° x 52.45905° .. 52.45905°
6.76339° .. 6.76339° x 51.21895° .. 51.21895°
License: cc-by-nc-nd/4.0
Language: Deutsch
Organisations
-
Rheinisch-Westfälische Technische Hochschule Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehrstuhl für Ingenieurgeologie und Hydrogeologie (Projektverantwortung)
-
Umweltbundesamt (Bereitstellung)
-
Universität Potsdam, Institut für Umweltwissenschaften und Geographie, Arbeitsgruppe Naturgefahren (Projektverantwortung)
Time ranges:
2022-01-01 - 2025-08-17
Alternatives
-
Language: Englisch/English
Title: Glaciers, lakes, and outburst floods: Changing hazards in the NW Pacific Coastal Mountains
Description: Accelerated glacier melt has spawned several thousand moraine- and ice-dammed lakes in high mountains, some of which grow rapidly in volume. Glacier lakes could become a sustainable source for drinking water and energy production. Yet, some glacier lakes have drained occasionally and without warning, with catastrophic consequences for communities along mountain channels. The peak discharges of such glacier lake outburst floods (GLOFs) can be many times higher than meteorological floods, and could become larger with unabated future growth of glacier lakes. The hazard, i.e. the probability of a GLOF occurring, has remained largely unknown, because GLOF reporting follows no systematic rules. Our knowledge on GLOF rates, magnitudes, and associated trends could thus be biased towards larger events with commensurate impact. In this research proposal we aim to close this research gap by systematically quantifying regional changes in glacier lake and GLOF abundance. Using these two inventories, our goal is to quantify how GLOF hazard has changed between 1985 and 2020. Our study region is the Northwestern Pacific Coastal Mountains (NPCM). Glaciers there had some of the highest melt rates in the past two decades, yet with little research on growing meltwater bodies and associated outbursts on regional scale. We will automatically and continuously map glacier lakes from Landsat satellite images at several time steps from the mid-1980s onward. We will learn Bayesian models from these lake inventories and climatic, glaciological, and morphological variables to predict the formation and growth of glacier lakes. Suddenly appearing sediment tails below shrinking glacier lakes can be diagnostic for previously unreported GLOFs. We will continuously search satellite imagery for unrecorded GLOFs, which we will validate with time series of measured discharges in our study region and a field visit to two selected glacial lakes. We will thus obtain a regionally consistent GLOF inventory that we use to infer how much GLOF rates and magnitudes in the NPCM have changed in the past 35 years. Finally, we will combine measured and simulated GLOF discharges into time series of lake outbursts so that we can estimate the probability or return period of a GLOF of a given magnitude. Using a non-stationary extreme value model, we can show how GLOF hazard has changed in recent decades and how hazard might change if glacier retreat continues unabatedly. We expect our computer-based work to robustly distinguish changes in GLOF hazard from the catchment to the local level. We will make our models freely available, which will be relevant for decision makers and regional planners given a growing population and resource exploitation in this and most other high mountain regions on Earth.
https://ufordat.uba.de/UFORDAT/pages/PublicRedirect.aspx?TYP=PR&DSNR=1138714
Resources
Status
Quality score
- Overall: 0.48
-
Findability: 0.57
- Title: 0.32
- Description: 0.29
- Identifier: false
- Keywords: 0.81
- Spatial: RegionIdentified (1.00)
- Temporal: true
-
Accessibility: 0.67
- Landing page: Specific (1.00)
- Direct access: false
- Publicly accessible: true
-
Interoperability: 0.00
- Open file format: false
- Media type: false
- Machine-readable metadata: false
- Machine-readable data: false
-
Reusability: 0.67
- License: ClearlySpecifiedAndFree (1.00)
- Contact info: false
- Publisher info: true
Accessed 1 times.