Description: Das Projekt "Light in - Light out" wird vom Umweltbundesamt gefördert und von Universität Basel, Institut für Anorganische Chemie durchgeführt. Mankind is approaching a crisis in energy generation and utilization. Traditional fossil fuel reserves are diminishing and legislative issues regarding CO2 emission will make use of existing lower grade reserves unattractive. New technologies have to be developed to satisfy the ever-increasing energy demand and to maximize efficient energy usage. The materials chemist, through the design of new materials with novel properties and by controlling interfacial interactions between materials, will play a crucial role in these endeavours and in enabling the paradigm shift that is required. This project is centred around two core and inter-related issues (i) energy generation from photovoltaics using sunlight and (ii) efficient lighting devices based on light-emitting electrochemical cells (LECs) and organic light emitting diodes (OLEDs). Both of these topics are areas of intense activity world-wide. Within Europe the PIs research group is one of the leaders in the field. However, as research efforts in these areas are proving successful and proof-ofprinciple systems are being established and optimized, a new factor needs to be addressed. State of the art photovoltaic devices based upon the dye-sensitized solar cell (DSC) most frequently utilize inorganic dyes comprising ruthenium complexes of oligopyridine ligands. The projected next generation mass market OLEDs and prototype LECs are based upon iridium complexes containing cyclometallated pyridine ligands. A traditional criticism of these approaches related to the costs of the raw materials although this is in reality low compared to the costs of other components. However, the price reflects in part the availability of these metals and in this respect devices based upon ruthenium (1 ppb by atom in Earth crust) or iridium (0.05 ppb by atom in Earth crust) are unsustainable. This project is concerned with the development of complexes based upon abundant and sustainable first row transition metals to replace second and third row transition metals in these devices. Initial efforts will centre upon complexes of copper(I) and zinc(II) which have well-established photochemistry and photophysics making them suitable for such applications. The PI has already established proof-of-principle for the replacement of ruthenium by copper in DSCs and is a world leader in this technology. The work on the two projects will involve (i) materials synthesis and characterization (ii) computational modelling (iii) device construction and testing and (iv) property optimization.
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Organische Leuchtdiode ? Fossiler Brennstoff ? Iridium ? CO2-Emission ? Pyridin ? Ruthenium ? Kupfer ? Photovoltaikanlage ? Basel ? Beleuchtung ? Farbstoff ? Photochemie ? Photovoltaik ? Solarstrahlung ? Solarzelle ? Zink ? Brunnen ? Anorganische Chemie ? Material ? Licht ? Metall ? Europa ? Weltbevölkerung ? Ackerland ? Bohrkern ? Energiebedarf ? Energiegewinnung ? Energiekrise ? Energienutzung ? Erdkruste ? Gesetzgebung ? Kontrollmaßnahme ? Rohstoff ? Staat ? Stand der Technik ? Synthese ? Technik ? Zelle ? Modellierung ? Energieeffizienz ? Salztonebene ? Arbeit ? Bedarf ? Forschung ? Schutzgebiet ? Planung ? Gebiet ? Kosten ? Markt ? Neuartige Materialien ? Preis ? NEU ? TEIL ? Geisteswissenschaften ? INITIATIVE ? VERGLEICHEN ? VERWANDT ? BEZUG ? EINSATZ ? Vermehrung ? KONNEX ? Buchgrundstück ? LAENDER ? Muskelarbeit ? NACHHALTIG ? ENTWICKLUNG ? EIN ? ERSATZ ? GEMISCHT ? GRUNDSAETZE ? GRUNDSATZ ? BESTANDTEIL ? NUTZUNG ? PROJEKT ? BESCHREIBUNG ? Verwertung ? GRUPPE ? SONSTIG ? VERFUEGBARKEIT ? STEUERUNG ?
License: cc-by-nc-nd/4.0
Language: Deutsch
Time ranges: 2011-01-01 - 2015-12-31
Accessed 1 times.