Description: Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena" wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.Air filters in stationary building ventilation systems guarantee the protection of people as well as sensitive technical components from harmful contaminants, from ultra-fine particles to viruses and germs. At the heart of such filter systems are highly efficient filter media with corresponding particle separation performance, which can be achieved in particular by using ultra-fine synthetic, glass or nanofibers. Against the background of rising energy costs and the need for global CO2 reduction, the energy consumption of air filters is increasingly coming into focus. In order to reduce this, modern air filter media are required to have high separation efficiency and the lowest possible pressure drop. Simulation is a valuable tool in the development of filter media for specific applications. By predicting the performance of a filter medium, its microstructure can be optimized to meet specific requirements. However, this requires a correct representation of the effects occurring in this process in order to guarantee the validity of the predicted material properties. In particular, no application-oriented model approaches currently exist for the processes involved in the deposition of ultra-fine particles on ultra-fine fibers. The aim of this project is to improve the simulation models established in virtual filter media development and to extend them with regard to the consideration of submicron fibers (nanofibers). For this purpose, suitable submodels will be developed and integrated into an overall simulation model in order to take into account, in particular, the effects that have been neglected so far. The improved model will first be extensively validated. Finally, its applicability will be demonstrated by the first simulation-driven prediction of an optimized nanofiber-coated air filter medium, which will then be manufactured and tested for its performance.
SupportProgram
Origin: /Bund/UBA/UFORDAT
Tags: Glas ? Filterbrunnen ? Luftfilter ? Ultrafeinstaub ? Filter ? Gebäude ? CO2-Minderung ? Nanofaser ? Abscheidung ? Energiekosten ? Energieverbrauch ? Lüftungsanlage ? Simulationsmodell ? Virus ? Deposition ? Modellierung ? Energieeffizienz ?
Region: Baden-Württemberg
Bounding boxes: 9° .. 9° x 48.5° .. 48.5°
License: cc-by-nc-nd/4.0
Language: Englisch/English
Time ranges: 2022-06-01 - 2025-05-31
Accessed 1 times.