Description: Das EU-Projekt hat insgesamt zum Ziel, die in Europäischen Waldökosystemen gespeicherten Kohlenstoff- und Stickstoffpools zu quantifizieren und eine Senkenfunktion für Kohlenstoff in Chronosequenzen abzuschätzen. Das an der Universität Bayreuth bearbeitete Teilprojekt beschäftigt sich in diesem Zusammenhang insbesondere mit der Senkenfunktion der Waldbodenvegetation.
Types:
SupportProgram
Origins:
/Bund/UBA/UFORDAT
Tags:
Vegetation
?
Kohlenstoff
?
Meteorologie
?
Bodendegradation
?
Pflanzenproduktion
?
Stickstoffbilanz
?
Waldökosystem
?
Artenvielfalt
?
Emission
?
Kohlenstoffkreislauf
?
Terrestrisches Ökosystem
?
Stoffbilanz
?
Schadstoffsenke
?
Modellierung
?
Bewirtschaftungssystem
?
Fischerei
?
Forstwirtschaft
?
Internationales Übereinkommen
?
Stoffstrom
?
Stoffkreislauf
?
Wald
?
Umweltschutz
?
Biodiversität
?
Biomasseproduktion
?
Regeneration
?
Boden [Regelungsfunktion]
?
FP5-EESD
?
Primärproduktion
?
forecasting
?
resources of the sea
?
Region:
Mühlhausen/Thüringen
Bounding boxes:
10.453° .. 10.453° x 51.2217° .. 51.2217°
License: cc-by-nc-nd/4.0
Language: Deutsch
Organisations
-
Czech Geological Survey, Environmental Geochemistry Group (Mitwirkende)
-
Institut National de la Recherche Agronomique Champenoux (Mitwirkende)
-
Kommission der Europäischen Gemeinschaften Brüssel (Geldgeber*in)
-
Max-Planck-Institut für Biogeochemie (Betreiber*in)
-
Natural Environment Research Council, Institute of Terrestrial Ecology, Edinburgh (Bush) Research Station (Mitwirkende)
-
Technische Universität München (Mitwirkende)
-
Umweltbundesamt (Bereitsteller*in)
-
Universita Napoli (Seconda Univ.) (Mitwirkende)
-
Universitet Köbenhavn (Mitwirkende)
-
University Edinburgh, Institute of Ecology and Resource Management (Mitwirkende)
-
University Sheffield, Department of Animal and Plant Sciences (Mitwirkende)
-
University of Agricultural Sciences Uppsala, Department of Ecology and Environmental Research (Mitwirkende)
-
Università degli Studi della Tuscia (Mitwirkende)
-
Universität Bayreuth, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Labor für Isotopen-Biogeochemie (Mitwirkende)
-
Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Allgemeine und Spezielle Zoologie, Bereich Tierökologie und Spezielle Biologie (Mitwirkende)
-
Universität Hohenheim, Institut für Pflanzenbau und Grünland, Fachgebiet Grünland und Futterbau (Mitwirkende)
-
Wageningen Universiteit (Mitwirkende)
-
weitere internationale zusammenarbeitende Institutionen (Mitwirkende)
Time ranges:
2000-03-01 - 2003-05-31
Alternatives
-
Language: Englisch/English
Title: Forest Carbon - Nitrogen Trajectories (FORCAST)
Description: Objective/Problems to be solved: The project addresses the controversial requirements set by the Kyoto Protocol and the Biodiversity Convention. The Kyoto Protocol seeks for biological sinks in order to balance fossil fuel emissions, and there is an economic stimulus for plantations with high productivity levels. These 'Kyoto Forests' may not be sustainable due to depletion in soils and may also result in a loss of biodiversity in plants and in soil organism. The effects on carbon stocks in the soil are largely unknown. There are experimental indications that productivity increases with diversity, and that in the long-term mono-cultures can result in soil degradation. Scientific objectives and approach: The overall objective is to quantify carbon (C) sinks and sources in European semi-natural and managed forest ecosystems from measurements of changes in C stocks. The project will quantify effects of plants and soils on carbon fluxes under variable inputs of nitrogen and management regimes. Furthermore, it will predict and verify fluxes at the stand scale, which can be used at larger scale modelling and will also investigate the interaction of plant production and soil carbon decomposition with biodiversity over a broad range of N-depositions and environmental regimes. This will be achieved by continuous measurements of net ecosystem exchange (NEE) within a number of forest stands to assess above and below ground ecosystem processes and to quantify the main components of the C sinks. Since chronosequences provide possibilities for temporal representation and spatial integration, this approach will be used to quantify the effects of vegetation and soil organic matter on ecosystem C fluxes over a rotation period and in relation to atmospheric nitrogen (N) deposition. Biogeochemical models indicate that forest after disturbance by logging, may be a C-source for as long as 30 years despite actively regeneration. The effects of management on ecosystem C fluxes, and in particular those management practices that may convert a forest from a C sink into a C source will examined. It remains at present unresolved to what extent biodiversity determines net primary production (NPP), heterotrophic respiration and accumulation of soil organic matter. This will be analysed by investigating the interaction among plant production, decomposition of soil organic matter and especially of soil micro-organisms, over a broad range of environmental and forest management conditions. The test and application of a biogeochemical model on a broader range of environmental conditions, species and management options for interpretation and prediction of net carbon fluxes as required by the Kyoto Protocol complete the work.
https://ufordat.uba.de/UFORDAT/pages/PublicRedirect.aspx?TYP=PR&DSNR=78924
Resources
Status
Quality score
- Overall: 0.45
-
Findability: 0.48
- Title: 0.01
- Description: 0.04
- Identifier: false
- Keywords: 0.83
- Spatial: RegionIdentified (1.00)
- Temporal: true
-
Accessibility: 0.67
- Landing page: Specific (1.00)
- Direct access: false
- Publicly accessible: true
-
Interoperability: 0.00
- Open file format: false
- Media type: false
- Machine-readable metadata: false
- Machine-readable data: false
-
Reusability: 0.67
- License: ClearlySpecifiedAndFree (1.00)
- Contact info: false
- Publisher info: true
Accessed 1 times.