Description: Hydrothermale Erzlagerstätten stellen grosse Metallanreicherungen in der Erdkruste dar und die Bildung von weltweit bedeutenden Lagerstätten erfordert Extraktion von Metallen aus grossen Gesteinsvolumina, effizienten Transport durch hydrothermale Fluide und lokalisierte Metallabscheidung. Fluid-Mineral-Interaktionen sind hierbei wesentliche Prozesse, die zur Bildung von weltweit bedeutenden Lagerstätten wie magmatisch hydrothermale porphyrische Cu-Au-Mo und epithermale Ag-Au-As-Sb Lagerstätten, und sedimentgebundene Pb-Zn Lagerstätten. Geochemische Modellierung von Fluidprozessen ist eine wesentliche Methode, um konzeptionell neue Modelle für erzbildende hydrothermale Systeme zu entwickeln. Dies setzt robuste thermodynamische Daten voraus, um zuverlässig Metall- und Mineralöslichekeiten und Fluid-Mineral-Reaktionen zu simulieren. Das beantragte Projekt beinhaltet daher die Entwicklung eines intern-konsistenten thermodynamischen Modells für den hydrothermalen Transport von Pb-Zn Ag-Au-As-Sb, was unseren vorhandenen Datensatz wesentlich erweitern wird. Der neue Datensatz wird in numerischen Simulationen der für die Bildung von sedimentgebundenen Pb-Zn und epithermalen Ag-Au-As-Sb Lagerstätten kritischen Prozesse zur Anwendung kommen. Die Modellierung wird wichtige Fragestellungen zur Bildung weltweit bedeutender Lagerstätten-Typen beantworten, wie die relative Rolle von reduzierenden sauren und oxidierenden Fluiden in sedimentgebunden Pb-Zn Systemen, die Verbindung zwischen exhalativen und carbonatgebundenen Pb-Zn Lagerstätten, und die Bedeutung der Metalloide As und Sb für den hydrothermalen Transport von Cu, Pb, Zn, Ag und Au. Das Projekt besteht aus 3 Modulen, die gemeinsam zu einem fundamental besseren Verständnis der Bildung von hydrothermalen Pb-Zn und Ag-Au-As-Sb Lagerstätten führen werden. Modul A beinhaltet die Entwicklung eines intern-konsistenten thermodynamischen Modells für den hydrothermalen Transport von Pb-Zn-Ag-Au-As-Sb. Unter Anwendung einer neuen globalen Regressionsmethode werden alle Standard-Gibbsenergien der wässrigen Metallspezies aus kritisch ausgewählten experimentellen Löslichkeits- und Spektroskopie Daten simultan abgeleitet. In den Modulen B und C werden mittels geochemischer Modellierung mit der GEM3 Software die wesentlichen Prozesse simuliert, die zur Bildung von sedimentgebundenen Pb-Zn Lagerstätten und intrusionsgebundenen epithermalen Ag-Au-As-Sb Lagerstätten führen. Das Projekt wird wesentlich zu den Zielen des DOME Schwerpunktprogramms beitragen, durch Kooperation mit einem Partnerprojekt, das die Bildung epithermaler Lagerstätten untersucht, durch Erstellung des thermodynamischen Datensatzes, der für andere DOME-Projekte direkt anwendbar ist, und durch Modellierungsergebnisse, die unmittelbar in geländebasierten Studien anderer DOME Projekte getestet werden können.
Types:
SupportProgram
Origins:
/Bund/UBA/UFORDAT
Tags:
Hydrothermale Geothermie
?
Carbonat
?
Geochemie
?
Halbmetall
?
Lagerstätte
?
Software
?
Spektralanalyse
?
Metall
?
Erdkruste
?
Mineralogie
?
Studie
?
Modellierung
?
Mineral
?
Petrologie
?
Petrology
?
Region:
Nordrhein-Westfalen
Bounding boxes:
6.76339° .. 6.76339° x 51.21895° .. 51.21895°
License: cc-by-nc-nd/4.0
Language: Deutsch
Organisations
-
Commonwealth Scientific and Industrial Research Organisation (Mitwirkung)
-
Paul Scherrer Institut (Mitwirkung)
-
RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Institut für Mineralogie und Lagerstättenlehre (Projektverantwortung)
-
Umweltbundesamt (Bereitstellung)
Time ranges:
2020-01-01 - 2025-12-31
Alternatives
-
Language: Englisch/English
Title: Sub project: Internally-consistent thermodynamic model for hydrothermal transport of Pb-Zn-Ag-Au-As-Sb: development and application to formation of sediment-hosted Pb-Zn and epithermal Ag-Au-As-Sb deposits
Description: Hydrothermal ore deposits are large metal enrichments in the Earth's crust and the formation of world-class deposits requires highly efficient extraction of metals from large volumes of source rocks, efficient transport by hydrothermal fluids and localized and effective metal precipitation. Fluid-mineral interactions are essential processes that lead to formation of world-class ore deposits such as magmatic-hydrothermal porphyry Cu-Au Mo and epithermal Ag-Au-As-Sb deposits, and sediment-hosted Pb-Zn deposits. Geochemical-thermodynamic modeling of the fluid processes driving ore deposit formation and hydrothermal alteration is a powerful approach for developing next generation ore systems models. Robust thermodynamic datasets are an essential prerequisite to accurately simulate metal and mineral solubilities and fluid-mineral reactions. This proposal seeks funding for developing a new internally-consistent geochemical-thermodynamic model for hydrothermal transport of Pb-Zn-Ag-Au-As-Sb, thereby significantly extending our existing dataset. The dataset will be applied to numerically simulate the first-order geochemical processes that control formation of sediment-hosted exhalative and carbonate hosted Pb-Zn deposits and of epithermal Ag Au-As-Sb deposits. The modeling will address key questions related to formation of these globally important ore deposit types, namely the relative role of reduced acid and oxidized brines in sediment-hosted Pb-Zn systems, the link between exhalative and carbonate hosted Pb-Zn deposits, and the effect of the metalloids As and Sb on the hydrothermal transport of Cu, Pb, Zn, Ag and Au. The project is organized as three work packages that will jointly lead to fundamental understanding of how hydrothermal sediment-hosted Pb Zn and magmatic-hydrothermal Ag-Au-As-Sb deposits form in the Earth's crust. In work package A, a new internally-consistent thermodynamic model for hydrothermal transport of Pb-Zn-Ag-Au-As-Sb will be developed, based on our new data regression approach that was recently developed. Critically evaluated experimental solubility and spectroscopic data for Pb-Zn-Ag-Au-As-Sb will be used for global fitting of the standard Gibbs energies of aqueous species to derive a consistent thermodynamic model for hydrothermal metal transport. In work packages B and C, geochemical modeling using the GEMS3 software will address the first-order processes that control formation of sediment-hosted Pb-Zn deposits and intrusion-related epithermal Ag-Au-As-Sb deposits. This project will make important contributions to the overaching goals of the DOME priority program, by collaboration with a counterpart project addressing the formation of epithermal systems, by producing a thermodynamic dataset ready for use by other DOME participants, and by generating modeling predictions that can be tested by field-based studies of other DOME projects.
https://ufordat.uba.de/UFORDAT/pages/PublicRedirect.aspx?TYP=PR&DSNR=1138842
Resources
Status
Quality score
- Overall: 0.45
-
Findability: 0.48
- Title: 0.00
- Description: 0.03
- Identifier: false
- Keywords: 0.87
- Spatial: RegionIdentified (1.00)
- Temporal: true
-
Accessibility: 0.67
- Landing page: Specific (1.00)
- Direct access: false
- Publicly accessible: true
-
Interoperability: 0.00
- Open file format: false
- Media type: false
- Machine-readable metadata: false
- Machine-readable data: false
-
Reusability: 0.67
- License: ClearlySpecifiedAndFree (1.00)
- Contact info: false
- Publisher info: true
Accessed 1 times.