Description: Trotz intesiver Untersuchungen an Karbonatiten und assozierten Gesteinen (ultrabasisch, basisch, alkalin) durch verschiedene geologische Untersuchungsmethoden und Disziplinen ist ihre Genese und Evolution immer noch nicht verstanden. Mehr noch, es gibt keinen Konsens, was die kritischen Voraussetzungen und Prozesse sind, die zur Mobilisierung, zur Metall-Anreicherung und Erz-Bildung führen. Hiermit schlagen wir eine Studie vor, die petrologische, geochemische, geochronologische und auch experimentelle Untersuchungen kombiniert, um die frühesten Metallanreicherungs-Prozesse in magmatischen Karbonatiten und assozierten Gesteinen zu verstehen. Der Hauptfokus liegt darin, die Zusammensetzung der primären magmatischen Schmelzen zu untersuchen und ihre Veränderung mit der Zeit zu verstehen. Dies wollen wir erreichen, indem wir mehrere ultrabasisch-basisch-alkaline-karbonatititsche Komplexe (UBAK) der Kola-Halbinsel untersuchen, die eine klassische und gut untersuchte Region dieser Gesteinen darstellt. Insbesondere wollen wir Antwort auf folgende Fragestellungen finden:1) Die Entwicklung mit der Zeit, a) innerhalb der Kola-Halbinsel (gibt es eine zeitabhängige Intrusionsrichtung, durch einen plume ausgelöst?), b) innerhalb ausgewählter Karbonatit-Massive (gibt es einen Altersunterschied zwischen den frühesten und späten Schmelzen?). Wir werden dafür hoch-präzise Datierung an frühen Gesteinen (z.B. durch Datierung von Perovskiten aus Pyroxeniten) und an späten Schmelzen (z.B. Datierung von Baddeleit und Zirkon aus Phoskoriten und Karbonatiten) durchführen.2) Wie war die Zusammensetzung der frühen Schmelzen, die heute nur noch in Einschlüssen von Kumulat-Mineralen vorhanden sind? Untersuchungen an Einschlüssen von sehr früh gebildeten Mineralen (Perowskit, Olivin, Pyroxen) werden uns die chemische Zusammensetzung dieser Schmelzen und deren Bedingungen (P, T, X, fO2) liefern.3) Geochemische Entwicklung der Gesteine und Minerale: welche Minerale (bzw. deren verschiedene Generationen) konzentrieren SEE, Nb und andere potentielle Erz-Elemente? Welche Rolle spielen Kumulate für Fraktionierungs- und Anreicherungs-Prozesse? Wir werden Kathodolumineszenz an Dünnschliffen anwenden, um verschiedene Mineralgenerationen zu erkennen, aber auch Mineralchemie (LA-ICP-MS), Isotopen (Sr, Nd, Pb) für ausgewählte Minerale (z.B. Karbonate, Apatite, Perowskite).Die frühesten Gesteine (Olivinite, Pyroxenite) enthalten häufig Perowskit und werden als Kumulate interpretiert. Das Studium der Schmelzeinschlüsse der Perowskite wird uns die Zusammensetung der Schmelzen liefern, aus denen sie gebildet wurden. Diese Information hilft uns, die an Perowskiten bestimmten Alter diesen Schmelzen zuzuordnen. Andererseits werden geochemische Untersuchungen an früh gebildeten (Olivinite, Pyroxenite) und spät gebildeten Gesteinen (Phoskorite, Karbonatite) die Rolle von Fraktionierungen, Mischungen und Entmischungen für Erzanreicherungs-Prozesse in Schmelzen im Laufe der Zeit aufzeigen.
Types:
SupportProgram
Origins:
/Bund/UBA/UFORDAT
Tags:
Main
?
Zirkonium
?
Carbonat
?
Geochemie
?
Landzunge
?
Primärbatterie
?
Geologischer Prozess
?
Chemische Zusammensetzung
?
Evolution
?
Mineralogie
?
Paläontologie
?
Studie
?
Schmelzen
?
Mineral
?
Gestein
?
Gesteinsbildung
?
Petrologie
?
Petrology
?
Region:
Bavaria
Lower Saxony
Rheinland-Pfalz
Saxony
Bounding boxes:
11.5° .. 11.5° x 49° .. 49°
9.16667° .. 9.16667° x 52.83333° .. 52.83333°
7.5° .. 7.5° x 49.66667° .. 49.66667°
13.25° .. 13.25° x 51° .. 51°
License: cc-by-nc-nd/4.0
Language: Deutsch
Organisations
-
Johannes Gutenberg-Universität Mainz, Fachbereich Chemie, Pharmazie und Geowissenschaften, Institut für Geowissenschaften, Arbeitsgruppe Petrologie (Projektverantwortung)
-
Leibniz Universität Hannover, Institut für Mineralogie (Projektverantwortung)
-
Technische Universität Bergakademie Freiberg, Institut für Mineralogie (Projektverantwortung)
-
Umweltbundesamt (Bereitstellung)
-
Universität Erlangen-Nürnberg, Department Geographie und Geowissenschaften, GeoZentrum Nordbayern (Projektverantwortung)
Time ranges:
2020-01-01 - 2025-12-31
Alternatives
-
Language: Englisch/English
Title: Sub project: Rare-metal enrichment in carbonatite-bearing magmatic systems: Part A. Understanding magmatic evolution and enrichment processes in time by high-precision dating and inclusion studies
Description: Despite intensive investigations of carbonatites and related rocks (ultrabasic, basic, alkaline) using multiple geoscience methods and disciplines, their genesis and evolution remain quite elusive. Furthermore, there is still no consensus what are the critical prerequisites and processes leading to the mobilization and enrichment of metals and formation of ore deposits. Here we propose a study which combines petrological, geochemical, geochronological as well as experimental analyses to better understand the earliest metal enrichment processes in carbonatite-bearing magmatic rocks (using ultrabasic-basic rocks of several UACC´s). The main focus will be on searching the link between composition of primary magmatic liquids and their evolution in time. This will be achieved on the example of the UACC´s from the Kola Alkaline Province representing a classical and well-exposed case of carbonatites and related deposits. In particular, we will try to find the answers on the following questions:1) The evolution in time, i) within the KAP (can be a track of a plume constructed from high-precision ages?), and ii) within selected UACC (can we resolve an age difference between earliest and late melts?). We will apply geochronology to the earliest rocks (e.g. pyroxenites) by high-precision perovskite dating, and to late-stage melts (carbonatites/phoscorites) by high-precision dating of baddeleyite and zircon. 2) What were the conjugate melts of earliest rocks that represent cumulates? The study of melt inclusions of early formed minerals (perovskite, olivine, pyroxene) of olivinites, pyroxenites, amphibolites will provide information of the chemical composition of these melts and their fluid composition. What were the conditions of these melts (P, T, X, fO2)? 3) The geochemical evolution of rocks and their minerals: What minerals (and their distinct generations) concentrate REE, Nb and other potential ore metals? What role play early cumulates for fractionation and enrichment processes? We will apply cathodoluminescence of thin sections to distinguish and characterize different mineral generations, mineral geochemistry (by LA-ICP-MS), and determine the isotope composition (Sr, Nd, Pb) with high precision for selected minerals (e.g. carbonate, apatite, perovskite).The earliest rocks (olivinites, pyroxenites) often contain perovskite and are typically interpreted as cumulates. The study of melt inclusions of minerals from these rocks will provide the composition of conjugate melts. With this information obtained perovskite ages will be reliably assigned to the formation time of these early melts. Geochemical studies of minerals from dated early- (olivinites, pyroxenites, amphibolites) and late-stage rocks (phoscorites, carbonatites), on the other hand, will elucidate the role of mineral fractionation, melt mixing and immiscibility for element enrichment up to ore levels in the established time interval.
https://ufordat.uba.de/UFORDAT/pages/PublicRedirect.aspx?TYP=PR&DSNR=1138834
Resources
Status
Quality score
- Overall: 0.46
-
Findability: 0.50
- Title: 0.00
- Description: 0.14
- Identifier: false
- Keywords: 0.89
- Spatial: RegionIdentified (1.00)
- Temporal: true
-
Accessibility: 0.67
- Landing page: Specific (1.00)
- Direct access: false
- Publicly accessible: true
-
Interoperability: 0.00
- Open file format: false
- Media type: false
- Machine-readable metadata: false
- Machine-readable data: false
-
Reusability: 0.67
- License: ClearlySpecifiedAndFree (1.00)
- Contact info: false
- Publisher info: true
Accessed 1 times.