Description: Fliedner, Annette; Rüdel, Heinz; Lohmann, Nina; Buchmeier, Georgia; Koschorreck, Jan Environmental Pollution 235 (2018), 129-140; online 23. Dezember 2017 The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority substances to whole fish concentrations. doi:10.1016/j.envpol.2017.12.052
 
    
    Global identifier: 
Doi(
    "10.1016/j.envpol.2017.12.052",
)
    
    
      Types:
      
        Text(
    Publication,
)
      
     
    
    Origins:
    
      /Bund/UBA/UPB
    
    
    
    Tags:
    
      
        Dioxin
      
      ?
    
      
        Furan
      
      ?
    
      
        Georgia
      
      ?
    
      
        Perfluoroctansulfonsäure
      
      ?
    
      
        Lipid
      
      ?
    
      
        Brasse
      
      ?
    
    
    
    
    
    License:  other-closed 
    
    Language: Deutsch 
    
    
     Issued: 2017-01-01
 
    
    
    
    
    
    
      Time ranges:
      
        2017-01-01 - 2017-01-01
      
    
    
    
    
    Alternatives
    
      
      - 
        
            Language: Englisch/English
            
 Title: Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection
 Description: Fliedner, Annette; Rüdel, Heinz; Lohmann, Nina; Buchmeier, Georgia; Koschorreck, Jan Environmental Pollution 235 (2018), 129-140; online 23 December 2017 The study addresses the topic of suitable  matrices for chemical analysis in fish monitoring and discusses the  effects of data normalization in the context of the European Water  Framework Directive (WFD). Differences between species are considered by  comparing three frequently monitored species of different trophic  levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama,  n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German  Danube. The WFD priority substances dioxins, furans and dioxin-like  polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl  ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene  (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as  non-dioxin-like (ndl)-PCB were analyzed separately in fillet and  carcass and whole body concentrations were calculated. Hg was analyzed  in individual fish fillets and carcasses, all other substances were  determined in pool samples, which were compiled on the basis of fish  size (3 chub pools, 1 bream pool, 2 perch pools). The data were  normalized to 5% lipid weight (or 26% dry mass in the case of Hg and  PFOS) for comparison between matrices and species. Hg  concentrations were generally higher in fillet than in whole fish (mean  whole fish-to-fillet ratio: 0.7) whereas all other substances were  mostly higher in whole fish. In the case of lipophilic substances these  differences leveled after lipid normalization. Significant  correlations (p ≤ .05) were detected between Hg and fish weight and age.  Hg concentrations varied least among younger fish. PCDD/F, dl-PCB,  ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with  lipid concentrations. Fillet-to-whole fish conversion equations and/or  conversion factors were derived for all substances except α-HCBDD.  Although more data also for individual fish would be desirable the  results are nevertheless a step on the way to translate fillet  concentrations of priority substances to whole fish concentrations. doi:10.1016/j.envpol.2017.12.052 
        
        https://www.umweltprobenbank.de/en/documents/publications/26123
Resources
    
    
    
    Status
    
    Quality score
    
      
      - Overall: 0.58
- 
        
          Findability: 0.70
            
            - Title: 0.80
- Description: 0.38
- Identifier: true
- Keywords: 1.00
- Spatial: NoRegion (0.00)
- Temporal: true
 
 
- 
        
          Accessibility: 1.00
            
            - Landing page: Specific (1.00)
- Direct access: true
- Publicly accessible: true
 
 
- 
        
          Interoperability: 0.50
            
            - Open file format: true
- Media type: true
- Machine-readable metadata: false
- Machine-readable data: false
 
 
- 
        
          Reusability: 0.11
            
            - License: UnclearInformation (0.33)
- Contact info: false
- Publisher info: false
 
 
Accessed 1 times.