API src

Found 112 results.

Related terms

Neuberechnung der Anlage IV der Strahlenschutzverordnung

Berechnung der 50-Jahre-Folgeaequivalentdosis fuer Organe und Gewebe, der effektiven Aequivalentdosis und der daraus resultierenden Grenzwerte der Jahresaktivitaetszufuhr fuer beruflich strahlenexponierte Personen. Ueberpruefung der metabolischen Daten, die in der Publikation ICRP 30 vorgeschlagen werden und eventuelle Unterbreitung eines Vorschlages. Vergleichsrechnungen mit alternativen metabolischen Daten. Sensitivitaetsanalyse fuer ausgewaehlte Verbindungen. Untersuchung der Relevanz kritischer Einwaende gegen die Anwendung des ICRP 30 Konzepts. Modellberechnungen der normierten Dosisleistung bei externer Bestrahlung.

Wo kommt Radioaktivität in der Umwelt vor?

Wo kommt Radioaktivität in der Umwelt vor? Radionuklide sind in der Umwelt überall anzutreffen. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Radionuklide sind in der Umwelt überall anzutreffen Bei vielen Menschen erzeugt der Begriff " Radioaktivität " Unbehagen. Die von radioaktiven Stoffen ausgesandte ionisierende Strahlung wird häufig als bedrohlich empfunden - unabhängig davon, wie stark sie ist und woher sie stammt. Grundsätzlich ist jeder Mensch auf der Erde auf natürliche Weise ionisierender Strahlung ausgesetzt. Niemand kann sich ihr entziehen. Ursache dafür sind Quellen, die in der Natur unabhängig vom Menschen entstanden sind und existieren. Wirken ionisierende Strahlen auf einen Menschen ein, so sprechen wir von einer Strahlenexposition – umgangssprachlich auch Strahlenbelastung genannt. Natürliche Strahlenbelastung Die natürliche Strahlenbelastung setzt sich aus inneren und äußeren Komponenten zusammen. Die innere Komponente macht den Hauptanteil der natürlichen Strahlenexposition aus. Zwei Drittel der gesamten natürlichen Strahlenexposition entfallen auf die innere Komponente, ein Drittel auf die äußere. Innere Strahlenbelastung Äußere Strahlenbelastung Innere Strahlenbelastung Über die Atemluft und die Nahrung nimmt der Mensch seit jeher natürliche Radionuklide in den Körper auf. Darüber hinaus können Radionuklide über offene Wunden in den Körper gelangen. Aufnahme über den Atem Der Großteil der natürlichen Strahlenbelastung geht auf das Einatmen des radioaktiven Gases Radon mit seinen Folgeprodukten zurück. Durch Radon sind wir im Durchschnitt pro Jahr einer Strahlenbelastung von 1,1 Millisievert ausgesetzt. Weitere Informationen finden Sie unter Radon. Aufnahme über die Nahrung Mit der Nahrung werden natürliche Radionuklide aus den radioaktiven Zerfallsreihen des Thoriums und Urans sowie das Kalium-40 aufgenommen; dadurch kommen im Mittel jährlich 0,3 Millisievert hinzu. Weitere Informationen finden Sie unter Radioaktivität in Lebensmitteln. Äußere Strahlenbelastung Die äußere Strahlenbelastung beträgt rund 0,7 Millisievert im Jahr. Kosmische Strahlung Ein erheblicher Teil der ionisierenden Strahlung , die auf den Menschen einwirkt, stammt aus der kosmischen Strahlung . Diese gelangt von der Sonne und aus den Tiefen des Weltalls zur Erde und besteht im Wesentlichen aus energiereichen Teilchen und aus Gammastrahlung . Auf ihrem Weg durch die Lufthülle wird die kosmische Strahlung teilweise absorbiert. Die Intensität der kosmischen Strahlung hängt somit von der Höhenlage ab. Sie ist auf Meeresniveau am niedrigsten und nimmt mit der Höhe eines Ortes zu. Auf der Zugspitze ist sie viermal höher als an der Küste. Flugzeuge kann man gegen die kosmische Strahlung nicht abschirmen. Daher ist der Mensch während eines Fluges dieser Strahlung ausgesetzt. Weitere Informationen finden Sie unter Strahlenexposition von Flugpassagieren sowie unter Überwachung des fliegenden Personals . Terrestrische Strahlung Zur äußeren Strahlenexposition zählt des Weiteren die terrestrische Strahlung . Ihre Ursache sind natürlich vorkommende radioaktive Materialien, die regional sehr unterschiedlich in Böden und Gesteinsschichten der Erdkruste vorhanden sind. Die durch die terrestrische Strahlung verursachte jährliche effektive Dosis der Bevölkerung beträgt im Bundesgebiet im Mittel etwa 0,4 Millisievert , davon entfallen auf den Aufenthalt im Freien zirka 0,1 Millisievert und auf den Aufenthalt in Gebäuden etwa 0,3 Millisievert . Natürlich vorkommende Radionuklide in Baumaterialien Steine und Erden sind wichtige Rohstoffe für mineralische Baumaterialien wie zum Beispiel Ziegel und Beton. Die in den Steinen enthaltenen Radionuklide gehen in die Baustoffe über und tragen auf diese Weise beim Aufenthalt in Häusern ebenfalls zu einer äußeren Strahlenexposition bei. Weitere Informationen finden Sie unter Baumaterialien. Natürliche Strahlenbelastung in Deutschland Die gesamte natürliche Strahlenbelastung in Deutschland beträgt durchschnittlich 2,1 Millisievert im Jahr ( effektive Dosis ). Je nach Wohnort, Ernährungs- und Lebensgewohnheiten reicht sie von etwa einem bis zu zehn Millisievert . Belastung aus künstlichen radioaktiven Quellen Bei künstlichen Radionukliden in der Umwelt denkt man an Reaktorkatastrophen, wie sie in Tschornobyl ( russ. : Tschernobyl) oder Fukushima geschehen sind. Aber auch bei Kernwaffenversuchen wurden künstliche Radionuklide freigesetzt. Auch im Normalbetrieb entweichen in geringem Maße künstliche Radionuklide aus kerntechnischen Anlagen. Dies wird in verschiedenen Messnetzen streng überwacht. Weitere Informationen finden Sie unter IMIS . Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 04.07.2025

Vereinfachte Dosisabschätzung

Vereinfachte Dosisabschätzung Beim Umgang mit NORM -Stoffen können Beschäftigte innerhalb des Betriebs, bei dem diese Rückstände entstehen, aber auch außerhalb - bei Verwertungs- oder Entsorgungsunternehmen - einer erhöhten Strahlenexposition ausgesetzt sein. Auch bei der Allgemeinbevölkerung kann es durch die Verwertung oder Beseitigung zu erhöhten Strahlenexpositionen kommen. Wie lässt sich diese Strahlenexposition vereinfacht abschätzen, und wie kann sie gegebenenfalls verringert werden? Um die Strahlenexposition durch bergbaubedingte Umweltradioaktivität bewerten zu können, hat das Bundesamt für Strahlenschutz ( BfS ) 2010 " Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität (Berechnungsgrundlagen - Bergbau " [1] zur Verfügung gestellt. Für das Themenfeld "Rückstände mit erhöhter natürlicher Radioaktivität " ("Naturally Occurring Radioactive Materials", abgekürzt " NORM ") werden derzeit vergleichbare Berechnungsverfahren erarbeitet. Die im Folgenden aufgeführten Empfehlungen zur vereinfachten Dosisabschätzung ersetzen nicht die geplanten Berechnungsgrundlagen NORM . Die hier aufgeführten Rechenvorschriften sind vielmehr aus bisher veröffentlichten Werken zur Abschätzung der Strahlenexposition [1] , [2] zusammengestellt. Mit dem Strahlenschutzgesetz und der überarbeiteten Strahlenschutzverordnung wurde der Strahlenschutz in Deutschland zum 31.12.2018 neu geregelt. In Anlage 3 des Strahlenschutzgesetzes des Strahlenschutzgesetzes sind Arbeitsfelder aufgeführt, bei denen für Beschäftigte eine Strahlenexpositionen durch natürliche Radionuklide oberhalb von einem Millisievert pro Jahr auftreten können. Für dort genannte Arbeitsplätze ist eine Dosisabschätzung verpflichtend. Für Arbeitsfelder mit einer erhöhten Exposition durch eine Inhalation von Radon wurden separate Regelungen getroffen. Diese Arbeitsplätze sind in Anlage 8 des Strahlenschutzgesetzes aufgeführt. Darüber hinaus können Beschäftigte anderer Arbeitsgebiete beim Umgang mit NORM -Stoffen (zum Beispiel Rückstände nach Anlage 1 des Strahlenschutzgesetzes einer erhöhten Strahlenexposition ausgesetzt sein. Falls Beschäftige an mehreren Arbeitsplätzen mit NORM -Stoffen in Kontakt kommen, ist die effektive Dosis an allen exponierten Arbeitsplätzen einzeln zu ermitteln. Für die Gesamtbewertung ist die Summe der Effektivdosen entscheidend. Betriebliche Strahlenexposition Strahlenexposition der Bevölkerung Betriebliche Strahlenexposition Abschätzung der Strahlenexposition aus der spezifischen Aktivität Die Strahlenexposition für Beschäftigte kann prinzipiell anhand von Modellen aus der spezifischen Aktivität von Rückständen bestimmt werden. Das Bundesamt für Strahlenschutz hat hierfür eine vereinfachte Berechnungsvorschrift zur Ermittlung der effektiven Jahresdosis veröffentlicht [2] . Das Modell berücksichtigt die äußere Strahlenexposition infolge des Aufenthaltes unmittelbar neben einer großen aufgeschütteten Materialmenge, die Inhalation von Staub bei einer Staubkonzentration von 10 Milligramm pro Kubikmeter und die unbeabsichtigte Ingestion von 6 Milligramm Staub pro Arbeitsstunde. Gleichung 1 Zudem wird angenommen, dass Uran - 238 und Uran -235 im natürlichen Isotopenverhältnis vorkommen und diese Radionuklide sowie das Thorium-232 im radioaktiven Gleichgewicht mit ihren Zerfallsprodukten stehen. Wenn bei Rückständen das radioaktive Gleichgewicht gestört ist, wird für eine konservative Dosisabschätzung die höchste spezifischen Aktivität innerhalb der Uran -238- und Thorium-232-Zerfallskette verwendet. Die effektive Jahresdosis E in Millisievert lässt sich nach [2] mit Gleichung 1 berechnen: Ist im Ergebnis der Wert für E größer als 1 Millisievert , ergibt sich nicht zwingend eine erhöhte Strahlenexposition für Beschäftigte. Vielmehr ist eine ausführliche Expositionsabschätzung über alle Expositionspfade mit realistischen Parametern (zum Beispiel Nuklidverhältnisse, Staubkonzentration in der Luft, Aufenthaltszeiten) durchzuführen. Abschätzung der Strahlenexposition durch äußere Gammastrahlung Gleichung 2 Die Strahlenexposition durch äußere Gammaexposition kann anhand sogenannter Personendosimeter direkt bestimmt werden. Geeignete Messstellen bieten diese Geräte an und werten die Ergebnisse der Messungen aus. Eine andere Möglichkeit, die Strahlenexposition durch äußere Gammastrahlung zu bestimmen, ist die Messung der Umgebungsäquivalentdosisleistung Ḣ*(10) (hier: Ortsdosisleistung pro Zeiteinheit) mit geeigneten Messgeräten sowie die Ermittlung der tatsächlichen Aufenthaltszeit am exponierten Arbeitsplatz. Die Physikalisch-Technische Bundesanstalt ( PTB ) veröffentlicht die Bezeichnungen aller Geräte mit einer Bauartzulassung (Voraussetzung für die Eichfähigkeit) auf ihrer Internetseite . Aus der gemessenen Umgebungsäquivalentdosisleistung ergibt sich die jährliche effektive Dosis E in Millisievert nach [1] aus der Gleichung 2. Abschätzung der Strahlenexposition durch Inhalation von Staub Der Expositionspfad "Inhalation von Staub" ist nur beim Umgang mit oder beim Arbeiten in der Nähe von trockenen Rückständen zu berücksichtigen. Bei feuchten Rückständen ist die Möglichkeit für eine Staubbildung vernachlässigbar. Gleichung 3 Bei manchen Rückständen sind die Radionuklide nicht gleichmäßig im Rückstand verteilt. So ist zum Beispiel in Filterkiesen aus der Wasseraufbereitung der Radionuklidgehalt in den aufgewachsenen Krusten um ein Mehrfaches größer als im Gesamtrückstand. In solchen Fällen muss der Radionuklidgehalt im Staub gesondert ermittelt werden. Eine Expositionsabschätzung zur radiologischen Bewertung von NORM -Stoffen ist grundsätzlich nuklidspezifisch durchzuführen. Die jährliche effektive Dosis wird dann mithilfe der Gleichung 3 abgeschätzt: Die Aktivitätskonzentration in der Atemluft (in Becquerel pro Kubikmeter) kann aus der Staubkonzentration (in Gramm pro Kubikmeter) und dem Radionuklidgehalt des Materials (in Becquerel pro Gramm) in guter Näherung bestimmt werden. Für die Ermittlung der Staubkonzentration empfehlen Institutionen wie das Berufsgenossenschaftliche Institut für Arbeitssicherheit verschiedene geeignete Messmethoden. Abschätzung der Strahlenexposition durch Inhalation von Radon und dessen Zerfallsprodukten Gleichungen 4 und 5 Vor allem an wenig belüfteten Arbeitsplätzen in Gebäuden sind Beschäftigte häufig einer Strahlenexposition durch die Inhalation von Radon-222 und dessen kurzlebigen Zerfallsprodukten ausgesetzt. Die für die Dosis entscheidende Größe ist die potenzielle Alpha-Energie- Exposition (Zeitintegral der potenziellen Alpha-Energie-Konzentration). Ersatzweise lässt sich die effektive Dosis auch aus Werten der Radon-222 -Konzentration, des Gleichgewichtsfaktors und der Aufenthaltszeit abschätzen (vergleiche [2] für eine Auflistung geeigneter Verfahren). Die jährliche effektive Dosis kann nach [1] sowohl auf der Grundlage der potenziellen Alpha-Energie- Exposition kurzlebiger Radon-222 -Zerfallsprodukte (Gleichung 4) als auch der Radon-222 - Exposition und des Gleichgewichtsfaktors (Gleichung 5) abgeschätzt werden: Gleichung 6 Abschätzung der Strahlenexposition durch Direktingestion von NORM-Stoffen Der Expositionspfad "Direktingestion" berücksichtigt die unbeabsichtigte Ingestion von Staub aus NORM -Stoffen während der Arbeitszeit. Dabei ist die Expositionsabschätzung grundsätzlich nuklidspezifisch durchzuführen. Die Berechnung der jährlichen effektiven Dosis erfolgt dann nach [1] mit Hilfe von Gleichung 6. Strahlenexposition der Bevölkerung Bei der Verwertung von NORM -Rückständen können auch Personen der allgemeinen Bevölkerung einer zusätzlichen Strahlenbelastung ausgesetzt sein. Die für die berufliche Exposition aufgeführten Expositionspfade Inhalation von Staub, Inhalation von Radon , unbeabsichtigte Direktingestion von NORM -Stoffen und äußere Exposition durch Gammastrahlung sind auch bei der Abschätzung der Strahlenexposition für die Bevölkerung zu berücksichtigen. Für einige Expositionspfade sind jedoch altersabhängige Parameter zu verwenden (siehe dazu die "Berechnungsgrundlagen Bergbau" [1] ). Zusätzlich kann für die Bevölkerung auch der sogenannte Wasserpfad von Bedeutung sein. Dieser ist bei der Verwertung oder Deponierung immer dann zu berücksichtigen, wenn mit dem Regenwasser Radionuklide aus dem Rückstand herausgelöst werden und mit dem Sickerwasser ins Grundwasser gelangen. Ein Beispiel hierfür ist die Verwertung im Landschaftsbau. Wird aus einem (Privat-)Brunnen des beeinträchtigten Grundwasserleiters Wasser - zu Trinkwasserzwecken oder auch zur Bewässerung lokal erzeugter Lebensmittel (Gemüse, Obst oder auch Weideflächen) - genutzt, können sich unter ungünstigen Umständen für die Allgemeinbevölkerung größere Expositionen als bei den Beschäftigten ergeben. Abschätzung der Strahlenexposition durch Ingestion von lokal erzeugten Lebensmitteln Beim Expositionsszenario "Ingestion von lokal erzeugten Lebensmitteln" geht man davon aus, dass das gesamte benötigte Trinkwasser aus einem häuslichen Brunnen kommt, der 20 Meter von einer NORM -Ablagerung entfernt ist. Zudem werden Pflanzen und Tiere für den Eigenbedarf mit diesem Wasser versorgt. Weiterhin setzt dieses Modell voraus, dass die Hälfte aller verzehrten Lebensmittel vor Ort erzeugt wird. Die "Berechnungsgrundlagen Bergbau" [1] beschreiben ausführlich, wie die Strahlenexposition durch lokal erzeugte Lebensmittel berechnet wird. Die Gleichung 7 zeigt, welche Lebensmittel zur Gesamtdosis beitragen können: Gleichung 7 Für eine Erstbewertung, ob über den Wasserpfad eine relevante Strahlenexposition zu befürchten ist, kann anhand von Laborversuchen die Freisetzbarkeit von Radionukliden aus NORM -Stoffen mit Wasser ermittelt werden. In Anlehnung an die aktuellen Entwicklungen im Bodenschutzrecht ist hierfür ein normiertes Prüfverfahren (zum Beispiel DIN 19529) anzuwenden [3] . Das Wasser-zu-Feststoff-Verhältnis sollte dabei möglichst 2:1 betragen. Da die ungünstigste Einwirkungsstelle im Strahlenschutz der Brunnen zur Grundwasserentnahme aus einem nutzbaren Grundwasserleiter ist, wird beim Eintrag von Radionukliden durch das Sickerwasser eine Verdünnung im Grundwasser berücksichtigt. Die in der wässrigen Lösung aus dem Laborversuch ermittelte Aktivitätskonzentration kann somit für eine Erstbewertung als oberer Wert der Brunnenwasserkonzentration eingesetzt werden. Strahlenschutzmaßnahmen Betrieblicher Strahlenschutz Nach dem " ALARA-Prinzip " ist die Strahlenexposition für Beschäftigte unter Berücksichtigung der Verhältnismäßigkeit so gering wie möglich zu halten. Bei Arbeiten mit NORM -Stoffen kann - unter Beachtung gängiger Vorschriften zum Arbeitsschutz - die Strahlenexposition über die Inhalation von Staub und die unbeabsichtigte Aufnahme von kontaminiertem Material nahezu vollständig vermieden werden. Die Gleichungen (1) bis (6) zeigen, dass die jährliche effektive Dosis linear von den relevanten Größen, wie der spezifischen Aktivität im Rückstand, der Staubkonzentration oder der Aufenthaltszeit am exponierten Arbeitsplatz abhängt. Die Strahlenexposition für Beschäftigte lässt sich daher durch folgende Maßnahmen verringern: Verwertung von Rückständen mit möglichst geringer spezifischen Aktivität , Identifizierung der Hauptquellen für eine Staubentwicklung, Überprüfung der Wirksamkeit von Schutzeinrichtungen und gegebenenfalls Maßnahmen zur Vermeidung von Staubfreisetzungen, Überprüfung und Optimierung der Arbeitszeiten an den exponierten Arbeitsplätzen, Verwendung individueller Schutzausrüstung. Inwieweit die einzelnen Maßnahmen umsetzbar sind, hängt natürlich von der jeweiligen betrieblichen Situation ab. Bewertung der Strahlenexposition der Bevölkerung Ist in der Summe aller Expositionspfade inklusive des Wasserpfades eine Überschreitung des Dosisrichtwertes von 1 Millisievert pro Jahr nicht zu befürchten, kann die Verwertung beziehungsweise Deponierung auf dem geplanten Weg erfolgen. Liegt im Ergebnis der vereinfachten Dosisabschätzung eine Überschreitung des Dosisrichtwertes vor, ist nicht zwingend eine erhöhte Exposition gegeben. Vielmehr ist das Ergebnis anhand einer standortspezifischen Expositionsabschätzung zu präzisieren. Beispielsweise empfiehlt sich für den Wasserpfad eine detaillierte Untersuchung zum Radionuklidtransport in Sicker- und Grundwasser. Ein Hilfsmittel dazu ist der " Leitfaden des Bundesamtes für Strahlenschutz zur Untersuchung und Bewertung bergbaulicher Altlasten ". Falls das Ergebnis der standortspezifischen Expositionsabschätzung den Dosisrichtwert von 1 Millisievert pro Jahr als Summe aller Expositionspfade weiterhin überschreitet, ist eine Verwertung auf dem geplanten Weg nicht möglich. In diesem Fall müssen andere Verwertungs- oder Entsorgungsmöglichkeiten geprüft werden. Literatur: [1] BfS (2010): Berechnungsgrundlagen zur Ermittlung der Strahlenexposition infolge bergbaubedingter Umweltradioaktivität (Berechnungsgrundlagen - Bergbau) [2] Beck, T., Ettenhuber, E. (2006): Überwachung von Strahlenexpositionen bei Arbeiten Leitfaden für die Umsetzung der Regelungen nach Teil 3 Kapitel 1 und 2 der StrlSchV , BfS -SW-03/06, ISSN 1611-8723 [3] DIN 19529:2009-01:Titel: Elution von Feststoffen - Schüttelverfahren zur Untersuchung des Elutionsverhaltens von anorganischen Stoffen mit einem Wasser/Feststoff-Verhältnis von 2 l/kg. Beuth-Verlag, Berlin Stand: 03.07.2025

Induktion von Chromosomenaberrationen in menschlichen Lymphozyten durch ionisierende Strahlen ('biologische Dosimetrie') und Radiomimetika

Entnimmt man einer strahlenexponierten Person Blut, so laesst sich nach Kultivierung der Lymphozyten die Haeufigkeit bestimmter Chromosomenmutationen (dizentrische Chromosomen, Ringchromosomen) ermitteln, die durch die Strahlung induziert worden waren. Mit Hilfe von 'Eichkurven', die die Abhaengigkeit der Zahl der Aberrationen pro Zeile von der Strahlendosis wiedergeben, kann man die empfangene Dosis als 'Ganzkoerperaequivalentdosis' abschaetzen. Bei sehr niedrigen Dosen begnuegt man sich mit dem Nachweis einer statistisch signifikanten Erhoehung der Kontrollrate. Untersuchter Personenkreis: beruflich exponierte Personen, Strahlenunfallopfer, bestrahlte Patienten. Die Methode soll weiterentwickelt werden durch a) 'Semiautomatisierung' der mikroskopischen Auswertung, b) Ausarbeitung adaequater statistischer Verfahren. Diese strahlenbiologischen Untersuchungen werden ergaenzt durch Untersuchungen zur Induktion von Chromosomenaberrationen in menschlichen Lymphozyten durch Radiomimetika (z.B. Bleomycin, Phleomycin).

Weiterentwicklung vom ARTM zur realistischeren Berechnung der effektiven Dosis bezüglich Gammasubmersion, Radon-222 Folgeprodukte und Resuspension

Strahlendosis durch natürliche Radioaktivität in der Nahrung

Strahlendosis durch natürliche Radioaktivität in der Nahrung Mit dem Verzehr von Nahrungsmitteln nehmen wir Menschen immer auch natürlich vorkommende radioaktive Stoffe zu uns. In welchem Maße wir dadurch Strahlung ausgesetzt sind, lässt sich errechnen – aus dem Radionuklidgehalt, seiner altersabhängigen biologischen Wirkung im Organismus sowie den Verzehrsraten. Bei durchschnittlichen Ernährungsgewohnheiten ergibt sich eine natürliche Strahlenbelastung der Bevölkerung durch Nahrungsaufnahme von etwa 0,27 Millisievert pro Jahr. Alle unsere Nahrungsmittel enthalten natürliche Radioaktivität Alle Nahrungsmittel (Lebensmittel) enthalten natürlich vorkommende radioaktive Stoffe. Pflanzen und Tiere nehmen sie aus Böden oder Gewässern auf. So gelangen sie in die menschliche Nahrungskette. Mit dem Verzehr ( Ingestion ) von pflanzlichen und tierischen Nahrungsmitteln nehmen wir Menschen daher immer auch natürlich vorkommende radioaktive Stoffe zu uns - fachlich auch Radionuklide genannt. Das Bundesamt für Strahlenschutz ( BfS ) hat in verschiedenen Studien untersucht, in welchen Mengen natürliche radioaktive Stoffe in unserer Nahrung vorkommen. Aus den Studienergebnissen lässt sich ableiten, welcher Strahlendosis wir dadurch ausgesetzt sind. Untersuchungen zu natürlicher Radioaktivität in Nahrungsmitteln Wie wird die Strahlendosis durch natürliche Radionuklide in der Nahrung ermittelt? Bei durchschnittlichen Ernährungsgewohnheiten liegt die natürliche Strahlenbelastung durch Nahrungsaufnahmen bei etwa 0,27 Millisievert pro Jahr. Das Maß für die Wirkung der ionisierenden Strahlung , die auf menschliche Organe und Gewebe einwirkt, wenn man etwas isst oder trinkt ( Ingestion ), ist die effektive Dosis . Sie wird in der Einheit Sievert angegeben. Die verschiedenen Arten und Energien von Strahlung wirken unterschiedlich auf menschliche Organe und Gewebe. Ionisierende Strahlung ist besonders energiereich. Um die durchschnittliche jährliche Strahlendosis (genauer: die mit den Nahrungsmitteln aufgenommene Aktivität pro Jahr) zu berechnen, benötigt man die mit dem Nahrungsmittel aufgenommene spezifische Aktivität eines Radionuklid s, die Verzehrsmenge des Nahrungsmittels sowie die für das Radionuklid geltenden Dosiskoeffizienten (diese Koeffizienten geben die effektive Folgedosis pro Becquerel aufgenommener Aktivität in Abhängigkeit vom Alter der Personen in der Einheit " Sievert pro Becquerel " an). Daraus lässt sich die ernährungsbedingte Strahlendosis für verschiedene Altersgruppen der Bevölkerung errechnen, aus der sich ein jährlicher Durchschnittswert bilden lässt. Bei durchschnittlichen Ernährungsgewohnheiten ergibt sich eine natürliche Strahlendosis von etwa 0,27 Millisievert pro Jahr durch Strahlung, der unser Körper durch Nahrungsaufnahme von innen ausgesetzt ist. Strahlung aus natürlich und zivilisatorisch bedingten Strahlenquellen ist jeder Mensch ausgesetzt. Zum Vergleich: In Deutschland erhalten wir durch Strahlung aus natürlichen Quellen insgesamt eine Strahlendosis von durchschnittlich 2,1 Millisievert pro Jahr. Die Strahlendosis durch natürliche Strahlung, der unser Körper von außen ausgesetzt ist, beträgt circa 0,7 Millisievert im Jahr. Das Einatmen des natürlich vorkommenden radioaktiven Gases Radon mit seinen Folgeprodukten bewirkt im Durchschnitt pro Jahr eine Strahlendosis von 1,1 Millisievert. Die Strahlendosis durch Nahrungsaufnahme ist natürlicherweise durch die Eigenschaften der Gesteine und Böden bedingt, auf denen landwirtschaftliche Produkte erzeugt werden. Die Lebensmitteleigenschaften unterscheiden sich regional nur geringfügig und sind unveränderlich. Stand: 14.02.2025

Wismut Uranbergarbeiter-Kohortenstudie

Wismut Uranbergarbeiter-Kohortenstudie Die Wismut-Studie ist eine der weltweit größten Kohortenstudien zu Bergarbeitern, die beruflich Radon und seinen Folgeprodukten ausgesetzt waren. Das Bundesamt für Strahlenschutz ( BfS ) führt diese Studie seit 1993 durch mit dem Ziel, die gesundheitlichen Folgen der beruflichen Strahlen- und Staubbelastung wissenschaftlich aufzuarbeiten. Zahlreiche Ergebnisse dieser Studie wurden publiziert ( z.B. Kreuzer et al. 2023; Kreuzer et al. 2021 ; Kreuzer et al.,2018 ; Walsh et al. 2015 ). Öffnung der Wismut-Daten für externe Wissenschaftler: Das BfS stellt die Daten auf Antrag externen Wissenschaftlern zur Bearbeitung eigener Fragestellungen zur Verfügung (Einzelheiten siehe Opening of the Wismut Data for External Researchers; Call for Proposals , in englischer Sprache). Bergarbeiter unter Tage beim Bohren im Wasser stehend Die Wismut-Studie ist eine der weltweit größten Kohortenstudien beruflich radonbelasteter Bergarbeiter. Sie umfasst knapp 59.000 männliche Beschäftigte, die im Uranbergbau in der Deutschen Demokratischen Republik ( DDR) zwischen 1946 und 1990 tätig waren. Das Bundesamt für Strahlenschutz ( BfS ) führt diese Studie seit den 1990er Jahren durch mit dem Ziel, die gesundheitlichen Folgen der beruflichen Strahlen- und Staubbelastung wissenschaftlich aufzuarbeiten. Aufgrund ihres Umfangs, des langen Beobachtungszeitraums und der Fülle vorhandener Informationen ist die Studie einzigartig. Sie ermöglicht die Bearbeitung vieler verschiedener Fragestellungen. Die bisherigen Ergebnisse wurden in zahlreichen Publikationen veröffentlicht. Ergebnisse der Kohortenstudie Ausblick Aktuell werden die Risiken für andere Erkrankungen als Lungenkrebs durch Radon sowie für Erkrankungen durch Quarzfeinstaub in der Wismut-Kohorte mit den Daten des Beobachtungszeitraums 1946 - 2018 untersucht. Außerdem wird erforscht, wie robust die Risiken für Lungenkrebs durch Radon bei Berücksichtigung möglicher Unsicherheiten in der Berechnung der Radonexposition sind. Dazu wurde eine Methode speziell für die Daten der Wismut-Kohorte entwickelt, mit der Expositionsunsicherheiten bei der Risikoschätzung berücksichtigt werden können ( Ellenbach et al. 2023 ). Die Wismut- Kohorte ist auch Teil zweier weltweiter Poolingprojekte ("PUMA" – Pooled Uranium Miners Analysis, Rage et al. 2020 , Richardson et al. 2021 ; Richardson et al. 2022 , Kelly-Reif et al. 2023 ) und "iPAUW" - International Pooled Analysis of Uranium Processing Workers ) mit zahlreichen Uranbergarbeiter- und Uranaufbereiter- Kohortenstudien aus verschiedenen Ländern (Deutschland, Frankreich, Kanada, Tschechien, UK und USA ). Auch am europäischen Radon-Forschungsprojekt RadoNorm ist die Wismut-Kohorte beteiligt. Geplant ist auch die Auswertung der Daten zu den Frauen in der Wismut-Kohorte. Da von diesen nur sehr wenige unter Tage gearbeitet haben und damit strahlenexponiert waren, wurden sie bei den bisherigen Analysen nicht berücksichtigt. Darüber hinaus werden derzeit Lebenszeitrisiken für Krebserkrankungen basierend auf Ergebnissen der Wismut-Kohortenstudie systematisch untersucht und Methoden zur Berücksichtigung von Unsicherheiten bei der Berechnung der Lebenszeitrisiken entwickelt. Das Lebenszeitrisiko spielt zum Beispiel eine zentrale Rolle dabei, wie man die Exposition durch Radon umrechnen kann in eine effektive Dosis, die die Wirkung der Strahlung auf den Körper beschreibt. Fazit Die Zusammenhänge zwischen verschiedenen beruflichen Expositionen im Uranbergbau und gesundheitlichen Risiken werden anhand der deutschen Uranbergarbeiterstudie untersucht. Dadurch lassen sich neue Erkenntnisse für den Strahlenschutz und den Arbeitsschutz gewinnen und die wissenschaftlichen Grundlagen für die Anerkennung von Berufskrankheiten erweitern. Sowohl die berufliche Radon - als auch die Quarzfeinstaubexposition führen bei den Wismut-Beschäftigten zu einer deutlichen Erhöhung des Lungenkrebsrisikos, auch im Niedrigdosisbereich. Der radonbedingte Risikoanstieg hängt zusätzlich ab von Faktoren wie der Zeit seit Exposition , dem Alter bei Exposition und der Expositionsrate. Die Lungenkrebsrisiken durch Rauchen und Radon addieren sich nicht nur, sondern verstärken sich wechselseitig. Das heißt, das gemeinsame Vorliegen der beiden Risikofaktoren erhöht das Lungenkrebsrisiko besonders stark. Auch das Risiko, an einer Leukämie zu sterben, steigt mit der Strahlenexposition an, dieser Anstieg ist jedoch nicht signifikant. Für einzelne Leukämie -Subtypen ergeben sich signifikante Zusammenhänge. Des Weiteren zeigt sich ein sehr starker Anstieg der Sterblichkeit an Silikose mit zunehmender Belastung durch Quarzfeinstaub. Hinsichtlich der anderen untersuchten Todesursachen wurden bisher keine statistisch signifikanten Risikoerhöhungen beobachtet. Mit zunehmendem Beobachtungszeitraum ist mit wertvollen Erkenntnissen auch für Erkrankungen zu rechnen, die in der Kohorte eher selten auftreten. Stand: 02.02.2026

Was sind NORM -Rückstände?

Was sind NORM -Rückstände? Radionuklide der natürlichen Zerfallsreihen von Uran -238, Uran -235 und Thorium-232 sind in allen Gesteinen und Erzen in Spuren vorhanden. Werden Gesteine und Erze als Rohstoffe genutzt, werden daher grundsätzlich auch natürliche Radionuklide unbeabsichtigt in industrielle Prozesse eingeführt. Bei manchen Industriezweigen können sich natürliche Radionuklide in Teilstoffströmen anreichern. In der Fachliteratur werden diese Rückstände oft als "naturally occurring radioactive materials" (abgekürzt " NORM ") bezeichnet. Der Schutz von Beschäftigten und der Bevölkerung vor erhöhten Strahlenexpositionen durch natürliche radioaktive Stoffe in Deutschland ist im Strahlenschutzgesetz und in der Strahlenschutzverordnung geregelt. Radionuklide der natürlichen Zerfallsreihen von Uran -238, Uran -235 und Thorium-232 sind in allen Gesteinen in Spuren vorhanden. Natürliche Radioaktivität Wenn die spezifische Aktivität innerhalb einer Zerfallsreihe für alle Radionuklide gleich ist, spricht man von einem "radioaktiven Gleichgewicht". Durch chemische Prozesse (zum Beispiel Lösungsvorgänge mit dem Wasser) und physikalische Prozesse (zum Beispiel Ausgasung des radioaktiven Gases Radon oder Transport von Radionukliden mit Wasser) kann es zu Umverteilungen von Radionukliden kommen. Diese Umverteilungsprozesse können das Gleichgewicht stören. Als Folge sind natürliche Radionuklide in allen Umweltbereichen (Luft, Boden, Wasser, Pflanzen, Tiere) vorhanden. Je nach mineralogischer Zusammensetzung der Gesteine - insbesondere bei Vererzungen - ist der Radionuklidgehalt jedoch unterschiedlich hoch. Als obere Grenze für den natürlichen Hintergrundgehalt von Uran und Thorium (beziehungsweise der Folgeprodukte) in Böden und Gesteinen gelten im Allgemeinen 0,2 Becquerel pro Gramm (entspricht 200 Becquerel pro Kilogramm), in Einzelfällen (zum Beispiel Granit) ist eine spezifische Aktivität bis 0,5 Becquerel pro Gramm dokumentiert. Spezielle thorium- und uranhaltige Minerale können auch Aktivitätsgehalte von mehreren Becquerel pro Gramm aufweisen. Die Radionuklide der Zerfallsreihen sind – mit Ausnahme des Gases Radon – durchweg Schwermetalle. Chemisch und physikalisch verhalten sie sich in der Umwelt und bei industriellen Prozessen vergleichbar zu anderen, nicht radioaktiven Schwermetallen. Rückstände mit erhöhter natürlicher Radioaktivität aus industriellen Prozessen Öl-Pipeline Bei der Nutzung von Rohstoffen (zum Beispiel Erze) werden somit grundsätzlich natürliche Radionuklide in technologische Prozesse eingeführt. In bestimmten Industriezweigen können Beschäftigte oder die Bevölkerung infolge natürlicher Radioaktivität einer erhöhten Strahlung ausgesetzt sein. Ursachen sind entweder die Verwendung von Rohstoffen mit erhöhtem Radionuklidgehalt oder Radionuklidanreicherungen in Rückständen aus bestimmten technologischen Prozessen. In der Fachliteratur werden diese Rückstände oft als "naturally occurring radioactive materials" (abgekürzt " NORM ") bezeichnet. Ein Beispiel sind die Ablagerungen in Förderrohren aus der Erdöl- und Erdgasindustrie, die - je nach Lagerstätte - hohe Gehalte des radioaktiven Elementes Radium aufweisen können. NORM -Rückstände können grundsätzlich verwertet werden, sofern bei der beabsichtigten Folgenutzung keine erhöhte Strahlenexposition für Einzelpersonen der Bevölkerung zu erwarten ist. Falls dies aus technologischer beziehungsweise wirtschaftlicher Sicht nicht zumutbar ist, müssen die Rückstände auf Deponien sicher beseitigt werden. Gesetzliche Regelungen für Rückstände Mit dem Teil 3 der Strahlenschutzverordnung ( StrlSchV ) vom 20. Juli 2001 wurden erstmals in Deutschland Regelungen zum Schutz der Beschäftigten und der Bevölkerung vor erhöhten Strahlenexpositionen durch natürliche radioaktive Stoffe getroffen. Die betrachteten Materialien werden nicht wegen ihrer radioaktiven Eigenschaften oder ihrer Eignung als Kernbrennstoff genutzt; die erhöhten Radionuklidgehalte treten vielmehr als (unerwünschte) Begleiterscheinung einiger herkömmlicher industrieller Prozesse auf. Der Gesetzgeber hat es daher als vernünftig angesehen, die Regelungen auf solche Prozesse und Stoffe zu beschränken, bei denen sich aufgrund der heute üblichen Verwertungs- oder Beseitigungswege die Strahlenbelastung deutlich erhöhen kann. Eine erhöhte Strahlenbelastung für Einzelpersonen der Bevölkerung liegt vor, wenn der Richtwert von 1 Millisievert pro Jahr für die effektive Dosis überschritten wird. Dann sind Maßnahmen zum Schutz der Bevölkerung zu ergreifen. Der Richtwert orientiert sich an der Schwankungsbreite der natürlichen Strahlenexposition und ist auch in anderen Bereichen des Strahlenschutzes etabliert. Beschäftigte, die bei ihrer Arbeit mit NORM -Rückständen umgehen, gelten dabei als Teil der allgemeinen Bevölkerung. Anfang 2014 veröffentlichte die Europäische Atomgemeinschaft ( EURATOM ) Grundnormen zum Strahlenschutz . Die EURATOM -Mitgliedsländer sind verpflichtet, diese Regelungen in nationales Recht umzusetzen. In Deutschland erfolgte dies im Jahr 2017 mit dem Strahlenschutzgesetz . Ergänzend hierzu wurde die Strahlenschutzverordnung im Jahr 2018 grundlegend überarbeitet. Beide gesetzlichen Regelungen sind seit dem 31. Dezember 2018 in Kraft. Überwachungsgrenzen Mit Hilfe umfangreicher Untersuchungen in relevanten Industriezweigen wurde eine Anzahl von Rückständen festgelegt, bei deren Beseitigung oder Verwertung Maßnahmen zum Schutz der Bevölkerung erforderlich sein können. Ein Bewertungsmaßstab hierfür sind die Überwachungsgrenzen in Anlage 5 der Strahlenschutzverordnung . Werden diese Überwachungsgrenzen überschritten, kann die zuständige Strahlenschutzbehörde des Bundeslandes die Rückstände auf Antrag aus der Überwachung entlassen. Hierzu ist ein Nachweis zu erbringen, dass der Richtwert von 1 Millisievert pro Jahr für die Bevölkerung bei der beabsichtigten Verwertung oder Beseitigung eingehalten wird und die geplante Verwertung oder Beseitigung abfallrechtlich zulässig ist. Da beim Umgang mit derartigen Rückständen kein plötzliches Freisetzungs- oder Unfallpotenzial besteht, hat der Gesetzgeber auf den sonst im Strahlenschutz üblichen Genehmigungsvorbehalt verzichtet. Die betroffenen Betriebe setzen die Maßnahmen weitgehend eigenverantwortlich um. Sie müssen jedoch der zuständigen Landesbehörde die Ergebnisse ihrer Prüfungen mitteilen. Diese kann dann bei Bedarf weitere Auflagen erteilen oder Kontrollen vornehmen. Auswirkungen Die Erfahrungen beim Vollzug von Teil 3 der bisherigen Strahlenschutzverordnung aus dem Jahr 2001 zeigen, dass die Regelungen das Bewusstsein aller Beteiligten um mögliche Probleme und Gefahren beim Umgang mit Stoffen, die erhöhte natürliche Radioaktivität enthalten, gestärkt haben. Folglich reduzierte sich in einigen Bereichen die Strahlenbelastung, ohne dabei die betroffenen Industriezweige übermäßig zu belasten. Hilfestellung Das Bundesumweltministerium ( BMUKN ) und das Bundesamt für Strahlenschutz ( BfS ) unterstützen die zuständigen Landesbehörden beim Vollzug der rechtlichen Regelungen zur natürlichen Radioaktivität unter anderem durch untergesetzliche Regelwerke und Empfehlungen. So hat beispielsweise die Strahlenschutzkommission ( SSK ) auf Veranlassung des Bundesumweltministeriums eine Empfehlung zur repräsentativen Beprobung von Rückständen herausgegeben. Das BfS unterstützt die Umsetzung, indem es Leitfäden zur Ermittlung der Strahlenexposition sowie Messanleitungen erarbeitet. Außerdem prüft das BfS gegenwärtig, ob die Empfehlungen und Anleitungen zum Thema Bergbauliche Hinterlassenschaften auf Rückstände nach Anlage 1 des Strahlenschutzgesetzes übertragbar sind. Stand: 05.01.2026

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung Das BfS schätzt, wie viele Röntgenuntersuchungen in Deutschland durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben und mindestens alle zwei Jahre ausgewertet und bewertet. Für das Jahr 2023 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt, gut 40 Prozent davon allein im zahnmedizinischen Bereich. Jede Röntgenuntersuchung ist mit einem gewissen – wenn auch geringen – Strahlenrisiko verbunden. Daher wird regelmäßig abgeschätzt, wie viele Untersuchungen durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die deutsche Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben, ausgewertet und bewertet, um auch zeitliche Trends erkennen zu können. Die Auswertungen erfolgen mindestens alle zwei Jahre. Wie wird die Häufigkeit von Röntgenuntersuchungen abgeschätzt? Ärztliche Leistungen werden über spezielle Gebührenziffern abgerechnet, die die ärztlichen Maßnahmen und damit auch die hier interessierenden radiologischen Maßnahmen beschreiben. Da ca. 98 % der deutschen Bevölkerung gesetzlich oder privat krankenversichert sind, kann die Häufigkeit röntgendiagnostischer Untersuchungen gut mithilfe dieser Gebührenziffern abgeschätzt werden. Diese werden dem BfS für den ambulanten Bereich regelmäßig von der kassenärztlichen beziehungsweise kassenzahnärztlichen Bundesvereinigung sowie dem Verband der privaten Krankenversicherung zur Verfügung gestellt. Für den stationären Bereich stehen dem BfS zu zahlreichen Röntgenuntersuchungen, insbesondere zu dosisintensiveren Verfahren wie der Computertomographie ( CT ), verlässliche Daten des Statistischen Bundesamtes zur Verfügung. Darüber hinaus gehen hier die Ergebnisse eines Ressortforschungsvorhabens ein. Wie wird die Strahlenexposition durch Röntgendiagnostik abgeschätzt? Für die Abschätzung der kollektiven effektiven Dosis (Kollektivdosis) werden für die verschiedenen Untersuchungsarten jeweils die Produkte von Untersuchungshäufigkeit und einem repräsentativen Schätzwert für die mittlere effektive Dosis dieser Untersuchungsart ermittelt und über alle Untersuchungsarten aufsummiert. Mithilfe jährlicher Bevölkerungszahlen wird die mittlere effektive Dosis pro Einwohner und Jahr berechnet. Abbildung 1: Häufigkeit von Röntgenuntersuchungen in Deutschland Ergebnisse der aktuellen Auswertung Häufigkeit Für das Jahr 2023 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt (ohne zahnmedizinischen Bereich etwa 80 Mio. ). Die Anzahl von Röntgenuntersuchungen in Deutschland lag zwischen 2016 und 2023 im Mittel bei ca. 1,5 pro Einwohner und Jahr (siehe Abbildung 1). Etwa 80 % aller Röntgenmaßnahmen werden im ambulanten Bereich durchgeführt und hiervon ca. 90 % bei Kassenpatienten, wobei es sich im ambulanten Bereich vorwiegend um konventionelle Röntgenaufnahmen handelt. Die Gesamthäufigkeit von Röntgenanwendungen verlief zwischen 2016 und 2023 leicht abnehmend. Auffallend ist ein durch die COVID-19-Pandemie bedingter Rückgang der Häufigkeit in 2020 mit anschließendem Wiederanstieg in 2021. Konventionelle Röntgenaufnahmen Abbildung 2: Prozentualer Anteil der verschiedenen Untersuchungsarten an der Gesamthäufigkeit (links) und an der kollektiven effektiven Dosis (rechts) für das Jahr 2023 Etwa 40 % aller Röntgenuntersuchungen im Jahr 2023 wurden in der Zahnmedizin (inklusive Kieferorthopädie) durchgeführt (siehe Abbildung 2). Neben den zahnmedizinischen Untersuchungen entfiel der größte Teil aller Röntgenuntersuchungen auf das Skelett (das heißt Schädel, Schultergürtel, Wirbelsäule, Beckengürtel, Extremitäten) und auf den Brustkorb (Thorax). Die Anzahl der meisten konventionellen Röntgenuntersuchungen, z.B. von Schädel, Thorax und Wirbelsäule, hat in den letzten 15 Jahren deutlich abgenommen. Die Häufigkeit von Mammographien nahm infolge der Einführung des Deutschen Mammographie-Screening-Programms zwischen 2007 und 2009 um 35 % zu und ist – nach anschließender geringfügiger Abnahme – ab 2011 weitgehend konstant (Ausnahme: Pandemie-bedingter Rückgang in 2020). Computertomographie ( CT ) Die Häufigkeit von CT -Untersuchungen hat zwischen 2016 und 2023 um ca. 25 % zugenommen (siehe Abbildung 1). Etwa die Hälfte aller CT -Untersuchungen werden bei stationären Patienten und Patientinnen durchgeführt. Eine Zunahme der Untersuchungshäufigkeit ist übrigens auch bei der Magnetresonanztomographie ( MRT ) , also einem Schnittbildverfahren, das keine ionisierende Strahlung verwendet, zu verzeichnen. Dosis Abbildung 3: Mittlere effektive Dosis (in mSv) pro Einwohner und Jahr durch Röntgenuntersuchungen in Deutschland Die mittlere effektive Dosis infolge von Röntgenanwendungen in Deutschland pro Einwohner beläuft sich für das Jahr 2023 auf 1,5 Millisievert ( mSv ) (siehe Abbildung 3). Die mittlere effektive Dosis durch CT -Untersuchungen pro Einwohner und Jahr hat im betrachteten Zeitraum zugenommen, wobei dieser Anstieg wegen der über die Jahre abnehmenden Dosis pro CT -Untersuchung moderater ausfällt als die zugehörige Zunahme der CT -Häufigkeit. Bei den restlichen Untersuchungsverfahren nimmt die jährliche Pro-Kopf- Dosis über den Zeitraum 2016 bis 2023 dagegen ab (siehe Abbildung 3). Im kassenärztlichen ambulanten Bereich hat sich die Pro-Kopf- Dosis durch konventionelle Röntgenuntersuchungen in den letzten 15 Jahren nahezu halbiert. Erwartungsgemäß ist der relative Anteil konventioneller Röntgenuntersuchungen an der kollektiven effektiven Dosis eher gering. Beispielsweise beträgt dieser für Untersuchungen des Skelettsystems nur etwa 5 % , obgleich der Anteil an der Häufigkeit bei ca. einem Viertel liegt. CT -Untersuchungen sowie die ebenfalls dosisintensiven Angiographien und interventionellen Maßnahmen der Blutgefäße tragen zwar lediglich ca. 15 % zur Gesamthäufigkeit bei, ihr Anteil an der kollektiven effektiven Dosis betrug im Jahr 2023 jedoch beinahe 90 % (siehe Abbildung 2). Stand: 02.12.2025

Glossar

Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines radioaktiven Stoffes : und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA International Atomic Energy Agency – Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden. Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediatorin oder Mediator Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird eine Mediatorin oder ein Mediator auch als Streitschlichterin oder Streitschlichter bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1.000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema Röntgenstrahlung finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.

1 2 3 4 510 11 12