Im Erntezulassungsregister (EZR) werden alle Bestände von zugelassenem Ausgangsmaterial und des davon erzeugten Vermehrungsgutes verwaltet. Der Layer stellt die Flächen des EZR räumlich dar. Unterlayer ermöglichen die Unterscheidung nach der Baumart: Bergahorn, Douglasie, Esche, Esskastanie, Europäische Lärche, Fichte, Große Küstentanne, Grauerle, Hainbuche, Japanische Lärche, Kiefer, Moorbirke, Pappel, Robinie, Rotbuche, Roteiche, Sandbirke, Schwarzerle, Schwarzkiefer, Sitkafichte, Sommerlinde, Spitzahorn, Stieleiche, Traubeneiche, Vogelkirsche, Weißtanne, Winterlinde Im Erntezulassungsregister (EZR) werden alle Bestände von zugelassenem Ausgangsmaterial und des davon erzeugten Vermehrungsgutes verwaltet. Der Layer stellt die Flächen des EZR räumlich dar. Unterlayer ermöglichen die Unterscheidung nach der Baumart: Bergahorn, Douglasie, Esche, Esskastanie, Europäische Lärche, Fichte, Große Küstentanne, Grauerle, Hainbuche, Japanische Lärche, Kiefer, Moorbirke, Pappel, Robinie, Rotbuche, Roteiche, Sandbirke, Schwarzerle, Schwarzkiefer, Sitkafichte, Sommerlinde, Spitzahorn, Stieleiche, Traubeneiche, Vogelkirsche, Weißtanne, Winterlinde
Der NLWKN betreibt im Rahmen der Tätigkeiten als Gewässerkundlicher Landesdienst Niedersachsens zahlreiche Grundwassermessstellen in ganz Niedersachsen, die je nach Fragestellung unterschiedlichen Messnetzen und Messprogrammen innerhalb des Gewässerüberwachungssystems Niedersachsen (GÜN) zugeordnet sind. Auf diesem Informationsportal werden verschiedene Messwerte und Datenauswertungen veröffentlicht. Die messstellenspezifischen Messwerte und Datenauswertungen liegen sowohl in tabellarischer als auch in graphischer Form vor, der Darstellungszeitraum ist auswählbar. Zusätzlich sind die für die Grundwassermessstellen zugrundeliegenden Stammdaten inklusive Ausbauschema und Bohrprofil verfügbar.
Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Vulkanische Asche wurde vor kurzem als eines potenziellen Düngemittel für Ozeanoberfläche identifiziert worden. Jedoch werden die Prozesse, die Umwandlung von unlöslichen zu löslichen Eisen ermöglichen Fe-Verbindungen in der Asche wenig verstanden bisher. Diese Studie untersucht die vulkanische Wolke Kontrollen auf Asche Eisenlöslichkeit. Ich kombiniere Vulkanausbruch Spalte Modellierung mit hohen, mittleren und niedrigen Temperaturen chemische Reaktionen in Eruption Wolken, um besser einschränken Vulkanasche Eisen Mobilisierung unter Berücksichtigung der Wechselwirkung verschiedener Arten in einem Fest-Flüssig-Gas-System. Zuerst benutze ich ATHAM die Plum Dynamik und Mikrophysik lösen. Zweitens, entwickle ich eine Chemie und Thermodynamik Code, der die Umgebungsbedingungen (in-plume Temperatur, Druck, Feuchtigkeit usw.) bekommt von den ATHAM Ausgänge und simuliert die gas-ash/aerosol Interaktionen mit speziellem Fokus auf Eisen-Chemie. Dieses Modell basiert auf einer Reihe von gekoppelten Massenbilanzgleichungen für verschiedene Arten der Eruptionssäule. Begriffe, die in diesen Gleichungen basieren auf physikalisch-chemischen Wechselwirkungen von gasförmigen, flüssigen und festen Arten parametriert. Einige der wichtigsten Prozesse in dieser Studie nicht berücksichtigt sind: Gas-Scavenging durch Asche, Wasser und Eis, Auflösung von Asche in der flüssigen Phase und Eisen wässrigen Chemie. Eine Reihe von Laborexperimenten auf Asche wird auch als die Ergebnisse der Modellierung gegen echte Ascheproben und Beobachtung zu bewerten. Schließlich schlage ich die günstige vulkanischen Einstellung und in-plume Prozesse für Asche Eisen Mobilisierung.
Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.
Es steht im Interesse der Umweltforschung und Umwelterziehung Vorurteile ueber Belastungen durch Emissionen und Rueckstaende aus Braunkohlekraftwerken kritisch zu hintertragen und an einfachen Modell-Systemen Schad- und Nutzwirkungen von Kraftwerksreststoffen (Braunkohlenasche und Rauchgasgips) zu erfassen (Ziel). Es wird davon ausgegangen, dass bei einer richtigen Verwendung (Recycling) durchaus positive Wirkungen auf Umwelt und Gesundheit zu erwarten sind (Hypothese). Als Ergebnis ist festzustellen, dass mit einer Kombination von Braunkohlenasche und Rauchgasgips eine Verbesserung von sauren Boeden und des Pflanzenwachstums, sowie eine Behebung von Mangelsituationen an Spurenelementen (Bor, Selen, Molybdaen, u.a.) bei sachgerechter Anwendung moeglich ist (Ergebnis).
Der Datensatz präsentiert die Gesamtheit der Herkunftsgebiete im Land Brandenburg. Ein Herkunftsgebiet ist ein Gebiet mit annähernd einheitlichen ökologischen Bedingungen, in denen sich Erntebestände oder Saatgutquellen einer bestimmten Art oder Unterart mit ähnlichen phänotypischen oder genetischen Merkmale befinden. Unterlayer ermöglichen die Unterscheidung nach der Baumart: Bergahorn, Douglasie, Esche, Esskastanie, Europäische Lärche, Fichte, Grauerle, Große Küstentanne, Hainbuche, Japanische Lärche, Kiefer, Moorbirke, Pappel, Robinie, Rotbuche, Roteiche, Roterle, Sandbirke, Schwarzkiefer 847-849, Sitkafichte, Sommerlinde, Spitzahorn, Stieleiche, Traubeneiche, Vogelkirsche, Weißtanne, Winterlinde Der Datensatz präsentiert die Gesamtheit der Herkunftsgebiete im Land Brandenburg. Ein Herkunftsgebiet ist ein Gebiet mit annähernd einheitlichen ökologischen Bedingungen, in denen sich Erntebestände oder Saatgutquellen einer bestimmten Art oder Unterart mit ähnlichen phänotypischen oder genetischen Merkmale befinden. Unterlayer ermöglichen die Unterscheidung nach der Baumart: Bergahorn, Douglasie, Esche, Esskastanie, Europäische Lärche, Fichte, Grauerle, Große Küstentanne, Hainbuche, Japanische Lärche, Kiefer, Moorbirke, Pappel, Robinie, Rotbuche, Roteiche, Roterle, Sandbirke, Schwarzkiefer 847-849, Sitkafichte, Sommerlinde, Spitzahorn, Stieleiche, Traubeneiche, Vogelkirsche, Weißtanne, Winterlinde
In der Industrie werden Hochtemperaturprozesse (800 - 2000°C) zur Produktion von Zementklinker, Kalk oder anderen Produkten eingesetzt. In diesen Prozessen wird meist Erdgas oder Kohle für die Erzeugung von Hochtemperaturprozesswärme eingesetzt. Ziel dieses Vorhabens ist die Entwicklung eines einsatzfähigen Systems für die Konversion von Klärschlamm und anderen biogenen Rest- und Abfallstoffen in ein Brenngas zur direkten Substitution von fossilen Brennstoffen in Hochtemperaturindustrieprozessen. Im Rahmen von NaBI werden folgende Innovationen erforscht und erprobt, um die spezifischen Anforderungen der Hochtemperaturindustrieprozesse zu erfüllen: (1) Flexibilisierung des Gasifizierungsverfahrens bezüglich der Brennstoffqualität durch Optimierung der Wirbelschichtfluidisierung und damit Ermöglichung der Gasifizierung von Klärschlamm wechselnder Qualität sowie von weiteren Rest- und Abfallstoffen für einen breiten Einsatz des NaBI-Ansatzes. (2) Steigerung des Heizwerts des Brenngases durch Einsatz von Sauerstoff: Dadurch wird in gängigen Hochtemperaturprozessen eine weitaus höhere Substitutionsrate von Primärenergie ermöglicht. (3) Optimierung der Qualität der Klärschlammasche als Rohstoff für die Phosphorrückgewinnung durch Einsatz von Additiven. Damit wird die Attraktivität der Asche für Phosphorrückgewinnung erhöht. (4) Untersuchung und Nachweis des Einsatzes von Infrarot-Kamerasystemen für die Prozessüberwachung und -regelung. Bis 2026 wird die Marktreife für die optimierte Brenngasbereitstellung für Industrieprozesse durch Klärschlammgasifizierung erreicht, sodass die erste kommerzielle Anlage bis 2027 realisiert werden kann.
In der Industrie werden Hochtemperaturprozesse (800 - 2000°C) zur Produktion von Zementklinker, Kalk oder anderen Produkten eingesetzt. In diesen Prozessen wird meist Erdgas oder Kohle für die Erzeugung von Hochtemperaturprozesswärme eingesetzt. Ziel dieses Vorhabens ist die Entwicklung eines einsatzfähigen Systems für die Konversion von Klärschlamm und anderen biogenen Rest- und Abfallstoffen in ein Brenngas zur direkten Substitution von fossilen Brennstoffen in Hochtemperaturindustrieprozessen. Im Rahmen von NaBI werden folgende Innovationen erforscht und erprobt, um die spezifischen Anforderungen der Hochtemperaturindustrieprozesse zu erfüllen: (1) Flexibilisierung des Gasifizierungsverfahrens bezüglich der Brennstoffqualität durch Optimierung der Wirbelschichtfluidisierung und damit Ermöglichung der Gasifizierung von Klärschlamm wechselnder Qualität sowie von weiteren Rest- und Abfallstoffen für einen breiten Einsatz des NaBI-Ansatzes. (2) Steigerung des Heizwerts des Brenngases durch Einsatz von Sauerstoff: Dadurch wird in gängigen Hochtemperaturprozessen eine weitaus höhere Substitutionsrate von Primärenergie ermöglicht. (3) Optimierung der Qualität der Klärschlammasche als Rohstoff für die Phosphorrückgewinnung durch Einsatz von Additiven. Damit wird die Attraktivität der Asche für Phosphorrückgewinnung erhöht. (4) Untersuchung und Nachweis des Einsatzes von Infrarot-Kamerasystemen für die Prozessüberwachung und -regelung. Bis 2026 wird die Marktreife für die optimierte Brenngasbereitstellung für Industrieprozesse durch Klärschlammgasifizierung erreicht, sodass die erste kommerzielle Anlage bis 2027 realisiert werden kann.
| Origin | Count |
|---|---|
| Bund | 1289 |
| Europa | 4 |
| Kommune | 1 |
| Land | 407 |
| Schutzgebiete | 1 |
| Wissenschaft | 59 |
| Zivilgesellschaft | 15 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 11 |
| Chemische Verbindung | 10 |
| Daten und Messstellen | 57 |
| Ereignis | 7 |
| Förderprogramm | 1033 |
| Gesetzestext | 8 |
| Infrastruktur | 1 |
| Taxon | 35 |
| Text | 226 |
| Umweltprüfung | 20 |
| WRRL-Maßnahme | 9 |
| unbekannt | 317 |
| License | Count |
|---|---|
| geschlossen | 425 |
| offen | 1212 |
| unbekannt | 66 |
| Language | Count |
|---|---|
| Deutsch | 1516 |
| Englisch | 403 |
| Resource type | Count |
|---|---|
| Archiv | 28 |
| Bild | 19 |
| Datei | 89 |
| Dokument | 309 |
| Keine | 922 |
| Multimedia | 1 |
| Unbekannt | 5 |
| Webdienst | 10 |
| Webseite | 445 |
| Topic | Count |
|---|---|
| Boden | 1272 |
| Lebewesen und Lebensräume | 1402 |
| Luft | 954 |
| Mensch und Umwelt | 1683 |
| Wasser | 1126 |
| Weitere | 1703 |