Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/9b901002-a1fd-47b0-89d4-eb12f9117233?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 23.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/713101d0-8137-4da5-9010-8281fadd8bff?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Damit Ökosystemdienstleistungen, die beispielsweise der Bodenfruchtbarkeit und -gesundheit dienen, mit einer hohen Rate erbracht werden können, ist eine größere und aktivere mikrobielle Biomasse (MB) im Boden von Vorteil. Die MB wird häufig über die Chloroform-Fumigation-Extraktion von Kohlenstoff (C), Stickstoff (N) und Phosphor (P) bestimmt und diese drei Elemente weisen eine homöostatische Stöchiometrie auf. Mikroorganismen bestehen jedoch aus mehr als diesen drei Elementen und jene anderen spielen wichtige Rollen in Zellfunktionen, Wachstum, und Ökosystemdienstleistungsbezogenen Aktivitäten. Aber deren Stöchiometrie in der MB ist nicht bekannt. Gemäß dem Minimumgesetz werden Wachstum und Aktivität durch jene Nährstoffe begrenzt, die im Verhältnis zur benötigten Menge die geringste Verfügbarkeit aufweisen. Allerdings hat sich die Erkenntnis durchgesetzt, dass Co-Limitierung dominiert. Andererseits können einige Elemente wie Mangan andere wie beispielsweise Magnesium, Eisen und Zink substituieren. Das Verhältnis von C zu anderen Elementen als N und P, das für Wachstum und Aktivität im Boden benötigt wird, ist nicht bekannt. Kürzlich haben wir eine Chloroform-Fumigation-Extraktionsmethode zur Analyse weiterer MB-Elemente optimiert. Mit dieser Methode soll die MB in Bodenvarianten aus zwei Langzeitdüngeexperimenten und ihren Korngrößenfraktionen untersucht werden. Während sich erstere in ihrem Nährstoffstatus durch die verschiedenen Düngungevarianten unterscheiden, unterscheiden sich letztere durch die Diversität der Mineralien und die Qualität assoziierter organischer Bodensubstanz. In Inkubationsexperimenten sollen des Weiteren Elemente in mehreren Konzentrationsstufen zugeführt werden. Durch diese Herangehensweisen soll die Hypothese getestet werden, dass im Gegensatz zu C:N:P Elemente, die substituiert werden können, eine flexible Stöchiometrie aufweisen. Die Untersuchungen beinhalten die Messung von Bodenatmung und Enzymaktivitäten. Mittels Schrotschusssequenzierung sollen funktionelle Gene analysiert werden, die mit den Elementen in Beziehung stehen wie jene, die für Metalloproteine codieren. Es soll überprüft werden, ob das Wissen über die Stöchiometrie bioverfügbarer und MB-Elemente genutzt werden kann, um Wachstum und Aktivität der Mikroorganismen zu erhöhen. Die Ergebnisse dieses Projekts geben Einsicht in den stöchiometrischen Phänotyp der MB des Bodens jenseits von C, N und P. Dieses Wissen zusammen mit jenem über bioverfügbare Elemente soll Interessengruppen ermöglichen, die mikrobielle Gemeinschaft des Bodens durch spezifische Elementzugabe in spezifischen Konzentrationen so zu behandeln, dass Bodenfruchtbarkeit und -gesundheit sowie entsprechend Ökosystemdienstleistungen des Bodens erhöht werden.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
EDELNASS fokussiert auf die stoffliche Verwertung von Aufwüchsen von wiedervernässten Moor-Grünland, welches heterogen in der Artenzusammensetzung ist und oft Bewirtschaftungseinschränkungen unterliegt (z.B. Erntezeitpunkt). Biomasse und ihre Standortparameter von 5 Moorstandorten in ganz Deutschland werden analysiert und hinsichtlich ihrer Anwendbarkeit in 2 Verwertungsverfahren untersucht, getestet und bewertet: (i) Umwandlung in Bioraffinerien zu den biobasierten, hochwertigen Basischemikalien HMF und Furfural und der Optimierung der Verfahren an der Universität Hohenheim. Ebenso wird Lignin als weiteres Produkt hergestellt. Das HMF kann zur Herstellung des recyclebaren, biobasierten Hochleistungskunststoff PEF weiterverarbeitet werden, woraus die Hochschule Albstadt-Sigmaringen nachhaltige Verpackungslösungen entwickelt, (ii) Das Leibniz-Institut für Agrartechnik und Bioökonomie stellt zusammen mit seinen Partnern Faserstoffe aus der Biomasse her und verarbeiten diese weiter zu Papieren und Fasergussformteilen. Kopplungspotentiale von Stoffströmen der Rohstofffraktionen zwischen den Verfahren untersucht, indem Zwischen- und Nebenprodukte der Verfahren in die jeweils anderen Prozesse eingespeist werden. Ziel der Untersuchungen ist es, neue Wertschöpfungsketten auf der Grundlage von Nasswiesen-Bewirtschaftung zu entwickeln, die eine produktive Nutzung von Nassgrünland mit dem Erreichen von Naturschutz- und Klimaschutzzielen verbindet. Für eine zukünftige Honorierung von Ökosystemdienstleistungen vernässter Moore werden Datengrundlagen erstellt: CO2-Bilanz der Verfahren und möglicher Produkte (inkl. bodenbürtiger Emissionen), Entwicklung von Artenvielfalt und Wasserqualität. Die Kosten von der Rohstoffbereitstellung bis zum Endprodukt werden analysiert, um geeignete Betriebsmodelle für die einzelnen Verfahren abzuleiten und beispielhaft in Moorregionen zu projektieren.
Durch artenreiches Grasland werden vielfältige Ökosystemleistungen (ÖSL) simultan erbracht. Die Bandbreite der in der intensiven Graslandnutzung für Milchvieh eingesetzten Pflanzenarten beschränkt sich auf einige wenige Vertreter der Gräser und Leguminosen. Viele leguminose und nicht-leguminose dikotyle Pflanzenarten wurden bisher nicht züchterisch bearbeitet, sie werden bislang im Anbau kaum berücksichtigt und offiziell gar nicht empfohlen. Dikotyle Pflanzenarten weisen einen hohen Futterwert auf, sind durch tiefe Wurzeln häufig trockentoleranter als Gräser und enthalten sekundäre Inhaltsstoffe. Diese Eigenschaften sind bei zu erwartender zunehmender Trockenheit (tiefe Wurzel) und zur Reduktion der Methanemission von Wiederkäuern (sekundäre Inhaltsstoffe) entscheidend. Ein zentrales Problem dieser bisher wenig verbreiteten, minoren dikotylen Pflanzenarten ist die unzureichende Kenntnis der agronomischen und qualitativen Eigenschaften sowie die Aussichten für eine weitergehende züchterische Bearbeitung, weil zur intra-spezifischen Variation der ÖSL einzelner Pflanzenarten weitgehend Unklarheit herrscht. Das beantragte Verbundprojekt verfolgt deshalb das Ziel der Etablierung und Nutzung von artenreichem Grünland, um wichtige ÖSL durch verbesserte Zuchtsorten in angepassten neuartigen Mischungen oder durch Streifenanbau simultan zu erbringen. Es werden in einem systematischen Ansatz ausgewählte Arten mit wertvollen Eigenschaften identifiziert und die intra-spezifische Variabilität der Eigenschaften in einem 'pre-breeding' Ansatz ermittelt und beschrieben. Im Besonderen richten sich die ÖSL auf Biodiversität (Blütenangebot), Trockentoleranz (stomatäre Leitfähigkeit), pflanzliche Sekundärmetabolite (PSM wie Tannine), Ausdauer, Winterhärte, Konkurrenzkraft und Etablierungserfolg sowie auf Futterqualität, Ertrag und die biologische Stickstofffixierung. Ein Anbauprotokoll jeder Art wird eigens erstellt.
| Origin | Count |
|---|---|
| Bund | 1875 |
| Europa | 2 |
| Kommune | 18 |
| Land | 117 |
| Wissenschaft | 85 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 28 |
| Ereignis | 15 |
| Förderprogramm | 1591 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 1 |
| Repositorium | 1 |
| Text | 231 |
| unbekannt | 188 |
| License | Count |
|---|---|
| geschlossen | 308 |
| offen | 1684 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 1732 |
| Englisch | 566 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 78 |
| Datei | 106 |
| Dokument | 133 |
| Keine | 1202 |
| Multimedia | 1 |
| Unbekannt | 14 |
| Webdienst | 4 |
| Webseite | 710 |
| Topic | Count |
|---|---|
| Boden | 1520 |
| Lebewesen und Lebensräume | 1982 |
| Luft | 1132 |
| Mensch und Umwelt | 2050 |
| Wasser | 1107 |
| Weitere | 2042 |