API src

Found 2789 results.

Similar terms

s/öko-bilanz/Ökobilanz/gi

NIP II - FuE - Entwicklung einer fluorfreien katalysatorbeschichteten Membran zur Anwendung in PEM-Brennstoffzellen

Ressourcenschonung durch Etablierung eines Spenders für feste Seife im Krankenhaus

Zielsetzung: Flüssige Seife ist im Krankenhaus absoluter Standard. Doch warum ist das so und kann man nicht auch feste Seife einsetzen? Diese Frage stellte sich die Krankenhaushygiene des Luisenhospitals als ein Wechsel der Seifenspender anstand. Feste Seife hätte den Vorteil von geringerem Transport- und Lagervolumen und auch die Plastikverpackung würde wegfallen. Natürlich können wir die Seife im Krankenhaus nicht einfach auf den Waschbeckenrand legen, sondern müssen einen Seifenspender nutzen. Wir möchten in diesem Projekt einen Spender entwickeln, der hygienisch unbedenklich und intuitiv anwendbar ist. Weiterhin möchten wir uns genauer anschauen welche Aspekte für die Ökobilanz von Seife entscheidend sind. Ist es die Plastikverpackung und das Transportvolumen oder sind die Inhaltsstoffe die entscheidenden Hebel? Vorteile eines Spenders für feste Seife: Kostengünstig - Weniger Abfall - Langlebig - Nachhaltigere Logistik und Lagerung

Elektrosynthetische Herstellung von Paraffinen aus Tallöl, Teilvorhaben 2: Etablierung von Kolbe-Elektrolyse an TOFA zur Herstellung von Weißölen und Paraffinen

Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.

Elektrosynthetische Herstellung von Paraffinen aus Tallöl

Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen und Paraffinen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten sowie als Verarbeitungshilfsmittel bei Polymeren getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.

Elektrosynthetische Herstellung von Paraffinen aus Tallöl, Teilvorhaben 1: Scale-Up und Pilotierung

Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen und Paraffinen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten sowie als Verarbeitungshilfsmittel bei Polymeren getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.

Datengetriebene Anlagenüberwachung und -auslegung zur Sicherung der ökologischen Effizienz im Betrieb

Der effiziente Umgang mit Ressourcen und Energie ist eine essenziele Größe zum Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebs- und Vakuumtechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Des Weiteren besteht in der Automatisierungsindustrie ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebs- und Vakuumtechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. An der TU Dresden wird ein lebenszyklusbasierter Ansatz zur ökologischen Bilanzierung pneumatischer und elektrischer Anlagen entwickelt und an Demonstratoranlagen der Industrieprojektpartner validiert. Somit werden eine einheitliche und transparente Betrachtung der Umweltauswirkungen pneumatischer und elektromechanischer Antriebstechnik über alle Lebensphasen sowie ihr Vergleich untereinander ermöglicht.

Strukturklebstoffe auf Basis epoxidierter Öle, Teilvorhaben 3: Demonstrator mit biobasiertem Klebstoff geklebter Scharspitze

Ziel des Vorhabens ist es, biobasierte Strukturklebstoffe zu entwickeln. Die Basis besteht aus epoxidierten Pflanzenölen und Polymilchsäure. Der Anteil nachwachsenden Kohlenstoffs soll mindestens 95% betragen. Neben guten Anfangsfestigkeiten soll der Klebstoff vor allem auch gute Dauergebrauchseigenschaften aufweisen, damit der zu entwickelnde Demonstrator, geklebte Scharspitze für einen Grubber, eine lange Lebensdauer aufweist. Gleichzeitig soll der geklebte Hartmetallbesatz austauschbar sein. Die als Demonstrator gewählte Scharspitze soll auch zeigen, dass nachwachsende Rohstoffe für die harschen Bedingungen der Landwirtschaft geeignet sind: Vom Acker für den Acker. Epoxidierte Pflanzenöle werden zusammen mit Polyolen auf der Basis von Milchsäure formuliert und dann unter Zusatz weiterer Komponenten anhydridisch oder kationisch gehärtet. Die notwendigen Rohstoffe, vor allem die Polyole, die epoxidierten oder maleinisierten Pflanzenöle werden in angepasster Weise synthetisiert und teilweise neu entwickelt. Die notwendigen guten Dauergebrauchseigenschaften werden durch Additive erzielt, welche bevorzugt auch biobasiert sein sollen. Für die Härtung werden neben der photochemischen und thermischen Initiierung auch neuartige Methoden wie die Vorbestrahlung und Frontalpolymerisation erprobt. Der für den Demonstrator eingesetzte Klebstoff wird mittels LCA auf seinen ökologischen Impact untersucht. Als Demonstrator wird eine Scharspitze für einen Grubber entwickelt, bei welcher der Hartmetallbesatz mit dem am besten geeigneten biobasierten Strukturklebstoff aus dem Projekt geklebt wird. Insbesondere um auch den Austausch des geklebten Hartmetallbesatzes zu ermöglichen, muss die Scharspitze neu konstruiert werden. Dieser Demonstrator wurde gewählt, da er im Hinblick auf die erforderlichen mechanischen Eigenschaften und die Dauerbeständigkeit unter den harschen Bedingungen der Landwirtschaft besonders anspruchsvoll ist.

Horizont Europa, Rahmenprogramm für Forschung und Innovation (2021-2027), Neuartige Lebenszyklus-Methoden für biobasierte Produkte

In Organisationen und Ländern auf der ganzen Welt wurden Strategien und Vorschriften eingeführt, um die Auswirkung auf die Umwelt zu reduzieren und die Nachhaltigkeit der Produkte insgesamt zu erhöhen. Daher sind viele Innovationen und neue Technologien aufgekommen, um Werkstoffe und Waren zu produzieren, die auf Biomasse beruhen. Um zu prüfen, ob diese Produkte besser abschneiden als konventionelle Produkte, werden Lebenszyklusanalysen durchgeführt. Anhand der Ergebnisse können Produkte, die entwickelt oder bereits vertrieben werden, bewertet werden. Diese Bewertungen können jedoch kompliziert sein, insbesondere für Produkte, die noch entwickelt werden. Über das EU-finanzierte Projekt ESCIB soll die europäische biobasierte Wirtschaft gestärkt werden, indem wichtige Bewertungsmethoden ausgearbeitet werden, mit denen die Wertschöpfungsketten schneller und präziser geprüft werden können.

Kreislaufführung von VIP-Stützkernen

Zielsetzung: VIPs sind Hochleistungsdämmstoffe und bestehen vorrangig aus einem Stützkern aus pyrogener Kieselsäure, der energieintensiv in der Herstellung ist. VIPs werden in spezifischen Anwendungsfällen wie pharmazeutischen Transportboxen nach einer Nutzungsdauer von oft nur wenigen Jahren entsorgt, was zu erheblichen ökologischen und ökonomischen Belastungen führt: Hohe CO2-Emissionen: Die Produktion der pyrogenen Kieselsäure verursacht signifikante CO2-Emissionen. Entsorgung: VIPs werden meist deponiert oder verbrannt, da es kein etabliertes Recyclingverfahren gibt. Ressourcenverbrauch: Die Herstellung der Kieselsäure ist ressourcenintensiv. Das Projekt zielt darauf ab, ein Verfahren zur Kreislaufführung von VIP-Stützkernen mit einem maximalen Rezyklatanteil von mindestens 95 % zu entwickeln, ohne die Wärmeleitfähigkeit signifikant zu erhöhen. Dies soll durch folgende Maßnahmen erreicht werden: Entwicklung eines Recyclingprozesses: Ein Verfahren zur Extraktion und Wiederverwertung des alten Stützkernmaterials wird entwickelt und optimiert. Verschiedene Techniken sollen getestet werden, um eine optimale Verarbeitbarkeit und geringe Wärmeleitfähigkeit zu erreichen. Rückführungskonzept: Es wird ein Konzept erstellt, wie ausgemusterte VIPs an den Hersteller zurückgeliefert werden können. Dies könnte durch ein Pfandsystem oder durch wirtschaftliche Anreize für die Kunden erreicht werden. Insbesondere für pharmazeutische Transportboxen, die bereits teilweise rückgeführt werden, soll die Logistik verbessert werden. Umweltbilanzierung: Die Umweltwirkungen des Recyclingprozesses werden durch eine Life Cycle Assessment (LCA) quantifiziert. Ziel ist es, die ökologischen Vorteile im Vergleich zur herkömmlichen Herstellung aufzuzeigen und den ökologischen Fußabdruck zu reduzieren. Umweltbezogene Zielsetzungen: Reduktion von CO2-Emissionen und Energieverbrauch: Durch Wiederverwendung des Stützkernmaterials sollen die CO2-Emissionen und der Energieverbrauch signifikant reduziert werden. Verringerung von Abfällen: Durch die Einführung eines effektiven Recycling- und Rückführungsverfahrens sollen Deponie- und Verbrennungsabfälle minimiert werden. Optimierung der Herstellungskosten: Reduktion des Einsatzes neuer Rohstoffe durch Recycling. Dies soll zusätzliche wirtschaftliche Anreize für Firmen schaffen, sodass ökologischer und ökonomischer Nutzen erreicht wird.

Klimaschutzmodellregion Sauerland, Teilvorhaben: Multidisziplinäre Nachhaltigkeitsbewertung und raumplanerische Bezüge

1 2 3 4 5277 278 279