API src

Found 1085 results.

Related terms

Nachhaltige Entwicklung der Bundeswasserstraßen, Integriertes Flussauenmodell INFORM

Flussauen mit ihrem typischen Muster von unterschiedlichen Lebensräumen sind in Mitteleuropa stark gefährdet. Die Bundesanstalt für Gewässerkunde (BfG) hat daher das Integrierte Flussauenmodell INFORM (Integrated Floodplain Response Model) für den Einsatz an Bundeswasserstraßen erstellt, mit dem ökologische Modellierungen durchgeführt werden können. Das modular aufgebaute Modellsystem INFORM verknüpft hydrologische, hydraulische, morphologische und bodenkundliche Modelltechniken mit ökologischen Modellen. Dabei werden vor allem sogenannte Lebensraumeignungsmodelle (Habitatmodelle) angewendet. Solche Modelle beschreiben die potentielle Eignung eines Standortes als Lebensraum für bestimmte Arten und / oder Artengruppen anhand der Ausprägung mehrerer abiotischer Standortparameter. Die Bearbeitung folgt prinzipiell dem Wirkungspfad Abfluss - Flusswasser - Grundwasser - Boden - Biotik unter Berücksichtigung morphologischer Einflüsse, des direkten Einflusses der Überflutung und der (landwirtschaftlichen) Nutzung. Die Bewertung der prognostizierten Veränderungen erfolgt an Hand von Gesetzen und Verordnungen und beinhaltet auch die Auswirkungen des menschlichen Handelns.

Funktion und Struktur subsystemspezifischer mikrobieller Gemeinschaften im Benthos der südlichen und zentralen Nordsee und deren Rolle in Stoff- und Energieaustauschprozessen

Aktuelle Modelle zur Beschreibung benthischer Prozesse in der Nordsee behandeln nur unvollständige Ausschnitte aus dem Gesamtsystem. Dies ist auf eine nur lückenhafte Kenntnis über die im Benthos ablaufenden Prozesse zurückzuführen. Im beantragten Forschungsvorhaben soll die strukturelle und funktionelle Charakterisierung benthischer mikrobieller Gemeinschaften in verschiedenen durch die Markofauna definierten Subsysteme der südlichen und zentralen Nordsee (Deutsche Bucht, Niederländische Küste, Oyster Ground, Doggerbank, östliche Nordsee, Skagerrak und Kattegat) untersucht werden. Zum Verständnis benthischer Prozesse soll zusätzlich der qualitative und quantitative Eintrag von organischem Material sowie dessen Umsetzung im System betrachtet werden. Durch parallele Untersuchungen der Makrofaunastruktur (Dr. I. Kröncke, Forschungsinstitut Senckenberg) werden Aufschlüsse über die Wechselwirkungen zwischen verschiedenen Größenklassen und deren Rolle am Transfer von organischem Material in den einzelnen Subsystemen erwartet. Aus dem Zusammenhang von Struktur und Funktion komplexer Gemeinschaften, die in diesem Umfang bislang noch nicht in der Nordsee untersucht wurden, werden Hinweise auf die Bedeutung verschiedenen benthischer Systeme für den Stoff- und Energieaustausch erwartet. Daher können die aus dem beantragten Forschungsvorhaben erwarteten Ergebnisse maßgeblich zum Verständnis benthischer Prozesse beitragen und der Modellierung zugeführt werden. Hauptauftragnehmer im Ausland: University Northeastern Boston; Boston.

Entwicklung Terrestrischer Modellökosysteme: Neue Möglichkeiten zum Einsatz als Standardtestverfahren in der Abschätzung des Risikos von Pflanzenschutzmitteln auf Bodenorganismen

Die gegenwärtigen europäischen Vorschriften zur Zulassung von Pflanzenschutzmitteln sehen auf der ersten Stufe Einzelartentests unter Laborbedingungen vor. Sie sollen worst-case Szenarien der Exposition abbilden und können keinen Aufschluß über die vielfältigen Wechselbeziehungen sowie über Änderungen im strukturellen Gefüge der Bodenorganismen verschiedener trophischer Ebenen geben. Höherstufige Testverfahren sind mit Ausnahme des funktionellen Streubeuteltests nicht standardisiert. Nur großangelegte und damit kostenintensive Feldstudien liefern strukturelle Endpunkte und können zur adäquaten Beschreibung der komplexen Wirkzusammenhänge in der heterogenen Bodenmatrix beitragen. In der aktuellen Diskussion um die Revision der bestehenden EU-Richtlinien zeichnet sich ab, daß künftig zunehmend strukturelle Endpunkte, auch auf dem Niveau des Halbfreilandes, einbezogen werden sollen, um eine realitätsnahe Bewertungsgrundlage zu bilden. Im Kontext der bestehenden internationalen Leitlinien ist am Institut für Umweltforschung ein TME-System entwickelt worden, das unter natürlichen Witterungsbedingungen und über einen Zeitraum von bis zu einem Jahr artenreiche Gemeinschaften von Bodenorganismen weitgehend in ihrer ursprünglichen Zusammensetzung beherbergen kann. Im Mittelpunkt stehen dabei vier der abundantesten Gruppen der Meso- und Mikrofauna: Collembolen, Oribatiden, Enchytraeen und Nematoden. Diese Systeme sollen ausreichend empfindlich reagieren, um Effekte auf der Ebene von Organismengemeinschaften oder Populationen statistisch nachzuweisen. Umfangreiche Vorstudien befassen sich mit der Variabilität im Boden und der Stabilität der Biozönosen in TMEs, um das Design von Effektstudien den speziellen Gegebenheiten von Wiesenökosystemen anzupassen. Die TMEs bestehen aus großen, intakten und ungestörten Bodenkernen mit einer Höhe von 40 Zentimetern und einem Durchmesser von bis zu 47 Zentimetern. Sie werden unter natürlichen Witterungsbedingungen betrieben, bieten aber die Möglichkeit bei langandauernden Extremverhältnissen (vor allem Dürre) steuernd einzugreifen. Um möglichst empfindliche und diverse Lebensgemeinschaften vorzufinden, wurden die Bodenkerne nicht einem Agrarökosystem entnommen, sondern einer regelmäßig gemähten Wiese, die über Jahrzehnte nicht mit Pflanzenschutzmitteln behandelt worden sind. In Vorstudien im Freiland konnte gezeigt werden, daß die geklumpte Verteilung der Organismen über die Entnahmefläche Anpassungen bei der Gewinnung der Bodenkerne erfordert, welche die Variabilität in nachfolgenden Versuchen senken können. Nach dem Stechen der Bodenkerne werden die TMEs in die Versuchsanlage der RWTH Aachen transportiert, welche eine ausreichende Drainage in Verbindung mit einer intakten Wasserspannung gewährleisten soll, um sowohl Staunässe als auch ein Austrocknen der Kerne zu verhindern. U.s.w.

SeeWandel Klima: Modellierung der Folgen von Klimawandel und Neobiota für den Bodensee, Teilprojekt 1: Vergangene Klimaänderungen im Bodensee - Lehren für die Zukunft

SeeWandel-Klima: Modellierung der Folgen von Klimawandel und Neobiota für den Bodensee SeeWandel-Klima hat zum Ziel, aktualisierte Vorhersagen der Folgen des Klimawandels - unter Einbezug der Auswirkungen von invasiven Arten - auf das Ökosystem Bodensee und dessen nachhaltige Nutzung zu liefern. Die Projektarbeiten in SeeWandel-Klima sind in 9 Teilprojekten organisiert. Zentral sind Modellierungsarbeiten, mit dem Ziel komplexe Folgen von Faktoren wie Klimaänderungen und invasiven Arten sowie deren Zusammenspiel für das Ökosystem Bodensee und dessen Nutzung vorhersagen zu können. Die dafür notwendige Bereitstellung robuster Parameter und Erkenntnisse zur Entwicklung solch prognosefähiger Modellsysteme erfolgt seitens verschiedener Teams von Forschenden. Teilprojekt 1: Vergangene Klimaänderungen im Bodensee – Lehren für die Zukunft Seesedimente sind ein hochauflösendes Archiv für Umweltänderungen, die nicht mit historischen Quellen und mit Messdaten belegt sind. Sie können darum helfen, das Ausmaß heute beobachteter Veränderungen besser zu verstehen, um sich auf zukünftige Veränderungen sinnvoll vorzubereiten. Das Teilprojekt wird erstmalig eine detaillierte Hochwasserchronologie des Bodensees und damit der Niederschlagshistorie seines alpinen Einzugsgebietes erarbeiten. Heute verwendbare neue Untersuchungsmethoden sollen gezielt genutzt werden, um die Hochwassergeschichte des Bodensees und Alpenrheins mit hohem Detaillierungsgrad in prähistorische Zeiträume zu verlängern. Damit lassen sich extreme Hochwasserereignisse und Jahre mit sehr geringen Zuflüssen durch den Alpenrhein identifizieren. Untersuchungen von Sedimentkernen sind zudem der einzig mögliche Ansatz, um Informationen zum Ökosystem Bodensee aus messtechnisch nicht erfassten Zeiträumen zu gewinnen, und von historischen menschlichen Aktivitäten (Landnutzung, Wasserkraft, Wasserbau, Eutrophierung) unbeeinflusste Zeiträume zu analysieren. So lässt sich aus der Vergangenheit für die zukünftige Entwicklung lernen, um eine nachhaltige Entwicklung zu ermöglichen. Die Brücke in die Ökosysteme der Vergangenheit bilden Schalen von Kieselalgen, Muschelkrebsen und Reste von Cladoceren, die über tausende Jahre im Sediment erhalten sein können und seit etwa 50 Jahren regelmäßig im Wasser untersucht werden. Diese Organismenreste werden in einzelnen Zeitabschnitten im Sediment bestimmt und nach Möglichkeit mit eDNA-Untersuchungen ergänzt. Ziel 1: Eine aus Sedimenten abgeleitete Hochwasserchronologie für die letzten 5000 Jahren soll als Grundlage für Hochwasserstatistiken und -gefährdungen am Bodensee etabliert werden. Ziel 2: Die Reaktion der aquatischen Lebensgemeinschaften auf von menschlichen Aktivitäten unbeeinflusste Klimaveränderungen der Vergangenheit soll für die Bewertung der heute beobachteten Veränderungen erfasst werden.

Zur Integration von Ökosystemanalyse und umweltökonomischer Forschung

In den theoretischen Ansätzen der naturwissenschaftlichen Ökosystemanalyse stehen die Interaktionen von Populationen im Vordergrund, während das ökonomische System oft nur durch einen Parameter dargestellt wird. Umgekehrt wird in umweltökonomischen Modellen das Ökosystem häufig nur durch einen Parameter berücksichtigt. Dieses Forschungsprojekt zielt auf eine ausgewogenere Modellierung, die die Interaktionen innerhalb des Ökosystems, Interaktionen innerhalb des ökonomischen Systems und, besonders wichtig, wesentliche Interaktionen zwischen beiden Systemen berücksichtigt. Dazu wird im ersten Schritt die Leistungsfähigkeit ökonomischer Methoden in der Ökosystemanalyse untersucht. Im zweiten und zentralen Schritt werden ökonomische Modelle integriert mit Ökosystem-Modellen analysiert. Die methodische und theoretische Bedeutung des Forschungsprojekts liegt in der Bereitstellung innovativer statischer und dynamischer Allokationsmodelle, einschließlich der Multi-Spezies-Modelle, die Ökosystem und Ökonomie als gleichwertige Modellbestandteile behandeln und mit denen die Beziehungen zwischen beiden Systemen detaillierter als bisher analysiert werden können.

Nutzung von ATTO-Daten zum Testen von Erdsystemmodellen auf der km-Skala (ICON), ATTOsynthesis - Treibhausgasbilanz, Prozessverständnis und skalenübergreifende Modellierung

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Dynamik der Phosphor- und Wasserflüsse im Abfluss und bei der Pflanzenaufnahme in bewaldeten Kopfeinzugsgebieten

Hydrologische Fließwege bilden die kritische Verbindung zwischen der Quelle der P Mobilisierung und des P Exports zu den Flüssen. Die Prozesse der P Mobilisierung auf der Standortskale ist vergleichsweise gut verstanden, jedoch ist die Kenntnis des P Transportes in Hängen und Einzugsgebieten durch die Komplexität der Transport-Skalen und Fließprozesse begrenzt. In Hängen können große P Flüsse zum dynamischen P Export beitragen, da P oft in schnellen Fließwegen transportiert wird, insbesondere in bewaldeten Systemen wo präferentielle Fließwege häufig auftreten. Ein adäquates Prozesswissen der Hanghydrologischen Dynamik ist daher wichtig um die P Transport Dynamik zu beurteilen und vorherzusagen. Jedoch wurden bisher solche Studien fast ausschließlich in Einzugsgebieten mit landwirtschaftlicher Nutzung durchgeführt. In dieser experimentellen und modellierungs-basierten Studie über hanghydrologische Prozesse und Phosphortransport werden wir die Auswirkungen der Abflussprozesse auf den P-Transport in bewaldeten Hängen entlang des grundlegenden Hypothesen des SPP untersuchen. Wir werden die Auswirkungen unterschiedlicher Fließwege und Verweilzeiten auf den P Transport und den damit verbundenen hydrologischen Bedingungen untersuchen. Die Hypothese wird getestet, dass die P-Signaturen im Abfluss im Zusammenhang stehen mit den bodenökologischen P-Gradienten und dass die P-Signaturen durch die Verweilzeiten des Wassers im Hang bestimmt werden, die insbesondere durch präferentielle Fließwege bei Niederschlagsereignissen dominiert werden. Diese Hypothesen werden an den vier SPP Standorte im Gebirge mit einem innovativen, kontinuierliche Monitoring-System für unterirdische Hangabflüsse und P-Transport bei hoher zeitlicher Auflösung untersucht. Event-basierte und kontinuierliche Probenahmen für die verschiedenen P Spezies, stabile Wasserisotope und andere geogene Tracer in Niederschlag, Abfluss und Grundwasser werden es uns ermöglichen, Verweilzeiten von Wasser mit den P Flüsse und P Transportprozessen zu verknüpften. Schließlich werden wir ein prozessorientierten hydrologischen Hang-Modell weiterentwickeln um die verschiedenen Fließ-und Transportwege zu simulieren, um die Dynamik von Abfluss und P Transport zwischen der Hang- und Einzugsgebietsskala zu verknüpfen. Die Modellierung wird sich darauf fokussieren die Altersverteilung von Wasser und die bevorzugte Fließwege die durch 'hot spots' bei der Infiltration und P Mobilisierung entstehen in bewaldeten Hängen adäquat darzustellen.

Forschergruppe (FOR) 2337: Denitrifikation in landwirtschaftlichen Böden: Prozesssteuerung und Modellierung auf verschiedenen Skalen (DASIM), Teilprojekt: Regulation, Ökophysiologie und kinetische Parameter unkultivierter, N-Gas-Flux assoziierter, anaerober mikrobieller Gemeinschaften in landwirtschaftlich genutzten Böden

Denitrifizierer (reduzieren N-Oxide zu N2O und/ oder N2), nicht-denitrifizierende N2O-Reduzierer (reduzieren N2O zu N2) und dissimilatorische Nitratreduzierer (DNRA; reduzieren N-Oxides zu NH4+) sind fakultative oder obligate Anaerobier, welche die Emission des Treibhausgases N2O genauso wie die Stickstoffretention beeinflussen. Nicht-denitrifizierende N2O-Reduzierer und dissimilatorische Nitratreduzierer stehen mit Denitrifizierern im Wettbewerb um Elektronendonatoren. Definierte mikrobielle Taxa haben definierte ökophysiologische Eigenschaften, welche ihre Wettbewerbsfähigkeit und Fähigkeit zur N-Gasproduktion bestimmen und werden daher unterschiedlich auf Umweltfaktoren reagieren. Solche Eigenschaften sind jedoch im Wesentlichen für unkultivierte Taxa unbekannt, obwohl diese für die N-Gas Emissionen und Stickstoffretention in Böden bedeutend sind. Daher werden folgende Hypothesen untersucht: (i) Die Denitrifikationsantwort auf Umweltfaktoren wird durch gegensätzliche mikrobielle Gemeinschaften, einschließlich bislang unbekannter Arten, bestimmt und kann durch deren intrinsische ökophysiologische Eigenschaften erklärt werden. (ii) Denitrifikations-, N2O-Reduktions- und DNRA-assoziierte Genexpression und Gemeinschaftsstruktur spiegeln metabolische Zustände und Potenziale wider, weshalb diese zu einer besseren Vorhersagbarkeit von N2O und N2 Flüssen führen. Hochdurchsatzinkubationen unter verschiedensten Bedingungen (einschließlich von 15N-Tracersubstanzen) kombiniert mit funktioneller Genexpression, sowie Gen- und Transkript-basierter Next-Generation-Sequencing-Methodik werden eingesetzt um apparente Michaelis-Menten-Kinetiken und physiologische Parameter stimulierter Taxa zu bestimmen. Funktionelle Gene von Denitrifizierern (nirK/S kodierend für dissimilatorische NO-bildende Nitritreduktasen; nosZI kodierend für N2-bildende dissimilatorische N2O-Reduktasen), nicht denitrifizierenden N2O-Reduzierern (nosZII kodierend für N2-bildende dissimilatorische N2O-Reduktasen der Nichtdenitrifizierer) und DNRA (nrfA kodierend für NH4+-bildende dissimilatorische Nitritreduktasen) werden bevorzugt analysiert. Reaktionsmuster der Zielgemeinschaften und/ oder funktionellen Genexpression auf definierte Umweltparameter werden in Mikrokosmen bestimmt. Der Effekt von Kontrollfaktoren der N-Gasdynamik und Pflanzen auf die Zielgemeinschaften wird in Mesokosmen analysiert. Die Daten werden in der Entwicklung eines erweiterten Denitrifier-regulatory-phenotype-Konzeptes zusammengeführt und werden Einblicke in die Ökophysiologie und Wettbewerbsfähigkeit von Denitrifikanten, nicht-denitrifizierenden N2O-Reduzierern und DNRA unter vielfältigen Bedingungen geben. Antwortfunktionen der Aktivitäten dieser Gruppen auf organischen Kohlenstoff (d.h. Elektronendonatoren), Nitrat und Distickstoffmonoxid, deren Wachstumsraten, Erhaltungsraten und Gemeinschaftsstruktur werden für die Modellierung von Denitrifikation und N-Gasflüssen zur Verfügung gestellt.

Scenarioanalyse mit dem dynamischen Gewaessermodell SALMO zur Prognose der Wassergueteentwicklung in stehenden und gestauten Gewaessern

Mit dem am Institut fuer Hydrobiologie entwickelten dynamischen Oekosystemmodell SALMO laesst sich der Einfluss externer Belastungsquellen (Naehrstoffe, organische Belastung) und gewaesserinterner Massnahmen (Stauspiegelabsenkung, Teilzirkulation, Biomanipulation) auf die Wasserqualitaet von Talsperren und Seen (Phytoplanktonbiomasse, Sauerstoff, Nitratkonzentration) abschaetzen. So half das Modell in einer Studie der IDUS-GmbH bei der Charakterisierung von Einfluss und Wechselwirkungen unterschiedlicher Belastungskomponenten (Naehrstoffe, lichtabsorbierende Stoffe) bezueglich der Wasserguete der Talsperre Bleiloch. Unter massgeblicher Beteiligung des Instituts fuer Automatisierungs- und Systemtechnik der TU Ilmenau entstand eine komplette Neuimplementierung des Gleichungssystems mit dem Simulationssystem Matlab/Simulink sowie in der objektorientierten Programmiersprache JAVA. Diese ermoeglicht die Simulation raeumlich kompartimentierter Gewaesser, eine einfachere Handhabbarkeit des Gleichungssystems und eine betraechtliche Erweiterung des Anwendungsspektrums von SALMO als Werkzeug fuer Forschung, Lehre und Entscheidungsfindung.

Sonderforschungsbereich (SFB) 1076: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre, Teilprojekt A03: Reaktion der mikrobiellen Gemeinschaft auf den Eintrag von Oberflächensignalen in Grundwässer des Hainich CZE

Dieses Projekt erforscht die Bedeutung von Chemolithoautotrophie und Oberflächeneintrag als Quellen von reduziertem Kohlenstoff für die mikrobielle Gemeinschaft in den Hainich-Aquiferen mittels Mikrokosmen-Experimenten. Basierend auf Raman-Mikrospektroskopie in Kombination mit Isotopenmarkierungs-Experimenten wird eine neue Methode zur Hochdurchsatzsortierung von Zellen etabliert um metabolisch aktive mikrobielle Subpopulationen zu isolieren. Mittels Metagenomanalyse kann dann gezielt deren Rolle in den biogeochemischen Kreisläufen im Grundwasser untersucht werden.

1 2 3 4 5107 108 109