API src

Found 1080 results.

Related terms

Modellierung von Nährstoffreduktionszielen zur Umsetzung der OSPAR Nordostatlantikstrategie und Entwicklung von modellbasierten Prognosewerkzeugen

In 2021 werden die Vertragsparteien des Übereinkommens zum Schutz der Meeresumwelt des Nordost-Atlantiks (OSPAR-Übereinkommen) eine neue Nordostatlantikstrategie verabschieden. Diese hat im Hinblick auf Eutrophierung das Ziel, in 2022 maximal erlaubte Nährstoffeinträge auf der Basis von Ökosystemmodellen abzuleiten und bis 2024 erforderliche staatenbezogene Nährstoffreduktionsziele festzulegen. Darüber hinaus werden für die Umsetzung der Meeresstrategie-Rahmenrichtlinie zur Quantifizierung des Umweltziels 'Meere ohne Beeinträchtigung durch Eutrophierung' ebenfalls quantitative Nährstoffreduktionsziele sowie eine Zielkonzentration für Gesamtphosphor am Übergabepunkt limnisch-marin der in die deutschen Nordsee mündenden Flüsse benötigt. Das Vorhaben hat zum Ziel, diesen Prozess der Ableitung von Nährstoffreduktionszielen für die Nordsee fachlich und organisatorisch eng zu begleiten. Zunächst sollen auf der Basis geeigneter Ökosystemmodelle (z.B. ECOHAM, GPM, Modellsystem von MeRamo) Szenarien entwickelt werden, die eine Ableitung maximal zulässiger Nährstoffeinträge in OSPAR ermöglichen. Ferneinträge von Nährstoffen aus anderen Meeresgebieten sind dabei in den Modellen über eine entsprechende Analyse mit einem 'Transboundary Nutrient Transport Tool' zu berücksichtigen. Ein weiterer Schwerpunkt des Vorhabens ist die Weiterentwicklung der Prognosefähigkeit der Modelle. Sauerstoffmangelereignisse sollen verlässlich von den Modellen vorhergesagt werden. Diese Prognosen sollen der Bewertung des OSPAR-Indikators Sauerstoffkonzentrationen dienen und erlauben eine Abschätzung der Auswirkungen des Klimawandels auf den Parameter Sauerstoff. Die Ableitung von Nährstoffreduktionszielen in OSPAR wird von der Arbeitsgruppe ICG EMO (Intersessional Correspondence Group on Eutrophication Modelling) durchgeführt. Im Rahmen des Vorhabens soll diese Arbeitsgruppe geleitet und die erforderlichen fachlichen Arbeiten organisiert werden.

Modelling vegetation dynamics and biomass in semiarid ecosystems (Eastern Africa) using remote sensing multisensor approaches

This pre-study pilot project will be carried out in Kenya and Tanzania and is part of a more extensive remote sensing project (initiated by the European Space Agency, ESA) aiming to develop a monitoring system for the assessment of land cover change of farmlands, rangelands and forest standings (logging, fires, uncontrolled deforestation, new settlements, etc.) at a national regional level. An integrated approach of remote sensing techniques (both through the use of satellite and ground data), physical vegetation models and ground measurements will be adopted. Operatively, the execution will consist of a 6-month period (pre-study) consisting in a ground campaign along a north-south transect, which is almost unknown to the current vegetation cartography. Based on the field results of the pre-study and within an on-going 30 month period (extended study, see Annexed 3), new classification methods and algorithms will be developed for assessment of land use and cover change using ENVISAT-data. An outcoming of this research will be a system capable to monitor and plan the available agricultural food resources for those developing regions.

Wechselwirkungen zwischen N2-Fixierung und Denitrifizierung in einem Erdsystem-Modell mit flexibler Stöchiometrie und deren Einfluss auf das marine Stickstoffinventar in einem sich wandelnden Klima

Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.

Modellierung von Treibhausgasemissionen aus der Land-, Forst- und Viehwirtschaft in Deutschland, Teilprojekt 1: Modellierung von THG-Emissionen terrestrischer Ökosysteme

Forschergruppe (FOR) 2337: Denitrifikation in landwirtschaftlichen Böden: Prozesssteuerung und Modellierung auf verschiedenen Skalen (DASIM), Teilprojekt: Regulation, Ökophysiologie und kinetische Parameter unkultivierter, N-Gas-Flux assoziierter, anaerober mikrobieller Gemeinschaften in landwirtschaftlich genutzten Böden

Denitrifizierer (reduzieren N-Oxide zu N2O und/ oder N2), nicht-denitrifizierende N2O-Reduzierer (reduzieren N2O zu N2) und dissimilatorische Nitratreduzierer (DNRA; reduzieren N-Oxides zu NH4+) sind fakultative oder obligate Anaerobier, welche die Emission des Treibhausgases N2O genauso wie die Stickstoffretention beeinflussen. Nicht-denitrifizierende N2O-Reduzierer und dissimilatorische Nitratreduzierer stehen mit Denitrifizierern im Wettbewerb um Elektronendonatoren. Definierte mikrobielle Taxa haben definierte ökophysiologische Eigenschaften, welche ihre Wettbewerbsfähigkeit und Fähigkeit zur N-Gasproduktion bestimmen und werden daher unterschiedlich auf Umweltfaktoren reagieren. Solche Eigenschaften sind jedoch im Wesentlichen für unkultivierte Taxa unbekannt, obwohl diese für die N-Gas Emissionen und Stickstoffretention in Böden bedeutend sind. Daher werden folgende Hypothesen untersucht: (i) Die Denitrifikationsantwort auf Umweltfaktoren wird durch gegensätzliche mikrobielle Gemeinschaften, einschließlich bislang unbekannter Arten, bestimmt und kann durch deren intrinsische ökophysiologische Eigenschaften erklärt werden. (ii) Denitrifikations-, N2O-Reduktions- und DNRA-assoziierte Genexpression und Gemeinschaftsstruktur spiegeln metabolische Zustände und Potenziale wider, weshalb diese zu einer besseren Vorhersagbarkeit von N2O und N2 Flüssen führen. Hochdurchsatzinkubationen unter verschiedensten Bedingungen (einschließlich von 15N-Tracersubstanzen) kombiniert mit funktioneller Genexpression, sowie Gen- und Transkript-basierter Next-Generation-Sequencing-Methodik werden eingesetzt um apparente Michaelis-Menten-Kinetiken und physiologische Parameter stimulierter Taxa zu bestimmen. Funktionelle Gene von Denitrifizierern (nirK/S kodierend für dissimilatorische NO-bildende Nitritreduktasen; nosZI kodierend für N2-bildende dissimilatorische N2O-Reduktasen), nicht denitrifizierenden N2O-Reduzierern (nosZII kodierend für N2-bildende dissimilatorische N2O-Reduktasen der Nichtdenitrifizierer) und DNRA (nrfA kodierend für NH4+-bildende dissimilatorische Nitritreduktasen) werden bevorzugt analysiert. Reaktionsmuster der Zielgemeinschaften und/ oder funktionellen Genexpression auf definierte Umweltparameter werden in Mikrokosmen bestimmt. Der Effekt von Kontrollfaktoren der N-Gasdynamik und Pflanzen auf die Zielgemeinschaften wird in Mesokosmen analysiert. Die Daten werden in der Entwicklung eines erweiterten Denitrifier-regulatory-phenotype-Konzeptes zusammengeführt und werden Einblicke in die Ökophysiologie und Wettbewerbsfähigkeit von Denitrifikanten, nicht-denitrifizierenden N2O-Reduzierern und DNRA unter vielfältigen Bedingungen geben. Antwortfunktionen der Aktivitäten dieser Gruppen auf organischen Kohlenstoff (d.h. Elektronendonatoren), Nitrat und Distickstoffmonoxid, deren Wachstumsraten, Erhaltungsraten und Gemeinschaftsstruktur werden für die Modellierung von Denitrifikation und N-Gasflüssen zur Verfügung gestellt.

Umweltbedingte subletale Veraenderungen der Membran lebender Zellen und dadurch bedingtes Eindringen biologisch aktiver Makromolekuele in diese Zellen

Lebende Zellen des Menschen, der Tiere und z.B. der Mikroorganismen des Bodens haben eine Zellmembran, die sie von der Aussenwelt (ihrer Umwelt) abgrenzt. Abgrenzung und Schutz des Zellinneren - neben Versorgung und Entsorgung - ist die Aufgabe der Zellmembran. Auf diese Membran koennen von aussen kommende Stoffe einwirken und ihr Abschirmverhalten schwaechen ('Wegbereiter'). Schadstoffe und systemveraendernde Stoffe (genetic engeneering) koennen nun eindringen. - Im gegenwaertigen Vorhaben werden in-vitro-Medien und darin befindliche lebende Zellen als definiertes variierbares kuenstliches Modell eines Oekosystems verwendet, in dem das Verhalten definierter 'Wegbereiter' und 'Eindringlinge' erforscht wird.

Die Auswirkung der mittelalterlichen Klimaanomalie auf die Hypoxie in der Ostsee: Ein gekoppelter benthisch-pelagischer Modellierungsansatz

Der Klimawandel während der mittelalterlichen Klimaanomalie (MCA) und der kleinen Eiszeit (LIA) führte zur Ausdehnung bzw. Verringerung der hypoxischen Bodenbedeckung in der Ostsee. Hier schlagen wir eine Modellierungsstudie vor, um Mechanismen, durch die der Klimawandel zu den beobachteten Trends geführt hat, systematisch zu analysieren und Modellergebnisse anhand von geochemischen Sedimentkerndaten zu validieren. Das Zusammenspiel zwischen physikalischen und biogeochemischen Prozessen führt zu einer komplexen Dynamik, die den Sauerstoffgehalt in der Ostsee steuert. Die Sedimente spielen eine wichtige Rolle, indem sie sowohl als Quelle als auch als Senke für Phosphat fungieren, das den wichtigsten biolimitierenden Nährstoff bildet. Es ist jedoch kaum bekannt, wie der Klimawandel während der MCA zur Ausbreitung von Hypoxie führte. Es wurden bereits verschiedene Auslöser vorgeschlagen, um die Ausbreitung der Hypoxie während der MCA zu erklären, wie z.B. eine erhöhte Produktion von Cyanobakterien unter wärmeren Bedingungen, eine erhöhte / verringerte Stratifikation aufgrund sich ändernder Niederschlagsmuster und eine sedimentäre Freisetzung von Phosphaten. Im ersten Teil des Projekts (Arbeitspaket AP1) werden wir ein modernes Ökosystemmodell verwenden, um Szenarien zu identifizieren, die den Zusammenhang zwischen Klimawandel und Hypoxie im Mittelalter erklären können. Das Modell wird durch die Implementierung eines frühen diagenetischen Moduls verbessert, das chemische Profile im Sediment vertikal auflösen kann (AP2). Für biogeochemische Reaktionen werden temperaturabhängige Ratenausdrücke implementiert. Das Sedimentmodul wird zunächst auf den aktuellen Zustand der Sedimente kalibriert (AP3). Szenarien aus AP1, die die Sauerstofftrends erfolgreich erklären können, werden anschließend in Modellläufen vom Mittelalter bis zur Gegenwart getestet (AP4). Die Simulation des Mittelalters kann durch verschiedene Sedimentproxies validiert werden, die Trends in den Redoxbedingungen des Tiefenwassers, in der Zufuhr von Metallen aus Schelfe in tiefere Becken, welche die Sequestrierung von Phosphat beeinflusst, und in der Menge an in Sedimenten erhaltenem Phosphor und organischer Substanz rekonstruieren können. Die erwarteten Ergebnisse des Projekts sind die Zuordnung der Ausbreitung von Hypoxie während der MCA zu einem Mechanismus und ein verbessertes Verständnis der Rolle der benthischen Dynamik, die die Eutrophierung als Reaktion auf den Klimawandel beeinflusst.

Anwendung von Modellwerkzeugen zur Charakterisierung der Eutrophierungssituation der westlichen Ostsee

Die Nährstoffreduktionsziele des Ostseeaktionsplans basieren auf Schwellenwerten für den Eutrophierungszustand, die bereits 2013 unter Zuhilfenahme von Ökosystemmodellen abgeleitet wurden und heute nicht mehr den wissenschaftlichen Standards entsprechen. Sie bedürfen deshalb einer Überarbeitung. Bereits die letzte fachliche Ableitung dieser Zielwerte hat gezeigt, dass die westliche Ostsee mit ihrem Wasseraustausch mit der Nordsee und den dadurch bedingten Salinitätsgradienten eine spezielle Region ist, die nur durch ein dreidimensionales hoch aufgelöstes Ökosystemmodell adäquat abgebildet werden kann. Das Projekt hat zum Ziel, den in HELCOM anlaufenden Revisionsprozess der Zielwerte für Eutrophierungsparameter durch Simulationen mit dem ERGOM-Modell für die westliche Ostsee frühzeitig zu unterstützen. Der Revisionsprozess soll auch zum Anlass dienen, um kausale Zusammenhänge zwischen Eutrophierungsparametern detaillierter zu untersuchen, mit dem Ziel, die Schwellenwerte im Sinne eines konsistenten Managements besser abzugleichen. Dies soll exemplarisch am Zusammenhang Sichttiefe-Makrophyten und Sauerstoff-Makrozoobenthos auf der Basis von Modellläufen mit ERGOM untersucht werden. Weiterhin soll das Verständnis zu den Auswirkungen des Klimawandels auf ausgewählte Eutrophierungsparameter und ihre Schwellenwerte vertieft werden und es sollen modellbasierte Prognosen für bodennahen Sauerstoff für die Folgebewertung der MSRL bis zur Anwendungsreife weiterentwickelt werden. Die Projektergebnisse liefern auch eine wichtige Basis für die Überprüfung von Bewirtschaftungszielwerten für Stickstoff und Phosphor am Übergabepunkt limnisch-marin in deutschen Ostseezuflüssen.

Effizienzsteigerung des polyphagen Parasitoiden Aphelinus abdominalis durch Ausnutzung des Lernvermögens bei der Wirtssuche mit Hilfe von Infochemikalien des Pflanze-Wirt-Systems

Aphelinus abdominalis, ein Parasitoid der Familie Aphelinidae, wird seit mehreren Jahren als Nützling zur Blattlausbekämpfung in Unterglaskulturen angeboten. Das Potential seiner Effizienz wird aber im Vergleich zu den Blattlausparasitoiden der Aphidiinae häufig unterschätzt. Das Verhalten der Aphelinidae im Wirtshabitat ist in der Literatur gut dokumentiert, doch der Kenntnisstand über ihre Fernorientierung bei der Wirtssuche ist noch lückenhaft. In dem hier beantragten Forschungsvorhaben sollen in einer Verbindung von Laborexperimenten und anwendungsorientierten Gewächshausversuchen die Möglichkeiten für eine Effizienzsteigerung von A. abdominalis ausgelotet werden. Ein Schwerpunkt der geplanten Verhaltensstudien liegt dabei auf einer Aufklärung der Mechanismen des Lernvermögens. In zahlreichen Arbeiten wurde in den vergangenen Jahren gezeigt, daß sich die meisten Parasitoiden flexibel den wechselnden Umweltbedingungen anzupassen vermögen, indem sie bestimmte Duftstoffe ihrer Wirtspflanzen erlernen und für die Wirtssuche nutzen. Da Schlupfwespen mit einem breiten Wirtsspektrum auch im Gewächshaus mit einer Vielzahl unterschiedlicher Pflanze-Wirt-Systeme konfrontiert werden, ist es das Ziel dieses Projekts, anhand den Modellsystems A. abdominalis - Macrosiphum euphorbiae - Paprika/Aubergine sinnvolle Strategien für eine praktische Nutzbarmachung dieser Lernfähigkeit zu erarbeiten.

Interaktionen des ökologischen und ökonomischen Systems

Ein ökologisches System besteht aus Tier- und Pflanzenarten, deren Biomasse als gespeicherte Energie aufgefasst werden kann mit einem Nettoenergiezufluss durch die Sonne. Die Biomasse einer einzelnen Spezies bestimmt sich ferner aus dem Fressen und Gefressenwerden. Es wird angenommen, dass sich die Arten so verhalten, als maximierten sie ihre gespeicherte Energie unter der Nebenbedingung einer vorgegebenen physiologischen Funktion. Führt man endogene artenspezifische Energiepreise ein, lässt sich ein ökologisches Preisgleichgewicht definieren, dass formale Ähnlichkeiten zum Marktmodell der vollständigen Konkurrenz hat. Ziel des Projekts ist es, ein interdependentes Ökosystem auf die beschriebene Art zu modellieren und es mit einem den Ökonomen besser vertrauten interdependenten ökonomischen System zu verknüpfen. Mitwirkende Institution: University of Wyoming, Laramie, USA.

1 2 3 4 5106 107 108