Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_405 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EI05 : Amrum. Es liegen insgesamt 53798 Messwerte vor. Es liegen außerdem 44 Probenentnahmen vor (siehe Resourcen).
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_321 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper ST03 : Angeln - östl. Hügelland Ost. Es liegen insgesamt 39139 Messwerte vor. Es liegen außerdem 11 Probenentnahmen vor (siehe Resourcen).
<p>In einem breiten Korridor kann sich die Wümme eigendynamisch entwickeln.</p><p>Die Fließgewässer in Deutschland nehmen nur noch etwa 1 Prozent der Landesfläche ein. Das ist nur ein Bruchteil ihrer ursprünglichen Ausdehnung. Sie sind touristisch kaum noch erlebbar und nur wenig resilient gegenüber den Folgen des Klimawandels. Diese Situation lässt sich erheblich verbessern, indem Bächen und Flüssen in unserer Kulturlandschaft wieder mehr Fläche zurückgegeben wird.</p><p>Ziele der Wasserrahmenrichtlinie erreichen – den Gewässern Naturfläche zurückgeben</p><p>Deutschland wird von einem dichten Netz von Bächen und Flüssen durchzogen. Die gesamte Länge aller Fließgewässer beträgt etwa 590.000 Kilometer. Dieses Gewässernetz wird intensiv genutzt und wurde zu Gunsten von Siedlungen, Landwirtschaft, Verkehr und Energiegewinnung weitreichend umgestaltet. Auf Grund der vielfältigen Eingriffe gilt nur noch 1 Prozent aller Fließgewässer als unbelastet. Die Ziele des Gewässerschutzes werden deutlich verfehlt. Die europäische <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> fordert bis 2015 einen guten ökologischen Zustand der Fließgewässer herzustellen. Noch im Jahr 2022 wurde dieses Ziel in 90 Prozent der Bäche und Flüsse nicht erreicht <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">(Wasserrahmenrichtlinie – Gewässer in Deutschland 2021. Fortschritte und Herausforderungen).</a></p><p>Ein guter ökologischer Zustand und vielfältige Lebensraumangebote für unterschiedlichste Organismen sind eng miteinander verknüpft. Bäche und Flüsse können diese typischen Lebensräume jedoch nur ausbilden, wenn ihnen dafür Fläche zur Verfügung steht. Mehr Fläche bedeutet mehr Lebensraum und mehr <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>.</p><p>Mehr Fläche für Gewässer schafft nicht nur die nötigen Randbedingungen für einen nachhaltigen Gewässerschutz. Naturnahe Fluss- und Auenlandschaften können nachweislich über 40 verschiedene Funktionen erfüllen und sind multifunktonal ( <a href="https://www.umweltbundesamt.de/leistungen-nutzen-renaturierter-fluesse">Leistungen und Nutzen renaturierter Flüsse</a>). Das Erschließen der Multifunktionalität eines Flächenziels für die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a> ist daher auch Inhalt des <a href="https://www.bundesumweltministerium.de/natuerlicher-klimaschutz">Aktionsprogramms Natürlicher Klimaschutz</a> und der <a href="https://www.bundesumweltministerium.de/wasserstrategie">Nationalen Wasserstrategie</a>.</p><p>Wie wird die Gewässerentwicklungsfläche ermittelt?</p><p>Bei der <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">Berechnung der nötigen Gewässerentwicklungsfläche</a> macht man sich Gesetzmäßigkeiten der natürlichen Flussentwicklung zu nutze. Ein Gewässerbett wird beispielsweise umso breiter, je mehr Wasser ein Bach oder Fluss normalerweise mit sich führt, je geringer das Gefälle ist und je mehr Widerstand dem fließenden Wasser entgegengebracht wird. Für die Berechnung der Gewässerbettbreite werden daher Informationen zum Talgefälle, Windungsgrad, Böschungsneigung, Sohlrauheit und Breiten-Tiefen-Verhältnis sowie zum mittleren bordvollen <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a> benötigt. Diese Informationen liegen z.B. in Form von typspezifischen <a href="https://www.umweltbundesamt.de/publikationen/hydromorphologische-steckbriefe-der-deutschen">Gewässersteckbriefen</a> vor.</p><p>Wie viel Fläche benötigen unsere Flusslandschaften?</p><p>Im Rahmen eines Forschungsvorhabens wurde der Flächenbedarf unserer Fließgewässer berechnet. Alle Ergebnisse des Vorhabens sind in dem Bericht <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">„Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die Gewässerentwicklung</a>“ und in dem Hintergrundpapier des Umweltbundesamtes <a href="https://umweltbundesamt.de/publikationen/fluessen-baechen-wieder-mehr-raum-zurueckgeben">„Flüssen und Bächen wieder mehr Raum zurückgeben“</a> publiziert.</p><p>Aus den Berechnungen hat sich ein Flächenbedarf von insgesamt 11.400 Quadratkilometern für das gesamte Fließgewässernetz Deutschlands ergeben. Zwei Drittel dieser Fläche stehen heute nicht mehr zur Verfügung. Das bedeutet, dass den <strong>Flüssen und Bächen 7.000 Quadratkilometer an Entwicklungsfläche zurückgegeben werden muss</strong>, um die Ziele im Gewässerschutz erreichen zu können. Dies entspricht <strong>etwa 2 Prozent der Fläche Deutschlands</strong>.</p><p>Ursprünglich dürften den Bächen und Flüssen etwa 7 Prozent der Fläche Deutschlands zur Verfügung gestanden haben. Diese Fläche wurde durch den Gewässerausbau und Eingriffe in Auen- und Gewässerflächen auf ca. 1 – 1,4 Prozent reduziert. Mit der Realisierung eines Flächenziels von 2 Prozent, würde den Fließgewässern daher der Entwicklungsraum zurückgegeben werden, den das Fließgewässer- und Auensystem im Minimum benötigt.</p><p>Naturfern begradigtes Gewässer (links) im Vergleich zu einem renaturierten Fluss (rechts). 2 Prozent mehr Fläche für Gewässer sind in Deutschland nötig.<br> Stephan Naumann (links), Wolfgang Kundel (terra-air services / Landkreis Verden) (rechts)</p><p>Diagramm, in dem auf der y-Achse die Fläche Deutschlands und auf der x-Achse die Zeit dargestellt. Es wird schematisch gezeigt, wie viel an Gewässerentwicklungsfläche durch den Gewässerausbau verloren wurde und wie viel Fläche für einen guten Ökologischen Zustand benötigt wird</p><p>Große Steine und Baustämme sorgen als Strömungslenker für eine Verzweigung der Fulda.</p><p>Gewundener Verlauf der neuen Wern mit deutlich erkennbarem Verlauf eines alten geradlinigen Grabens, der streckenweise in die Renaturierung integriert ist.<br> Wasserwirtschaftsamt Bad Kissingen</p><p>An der Wümme und ihren Nebengewässern wurden Gewässerrandstreifen auf einer Gewässerlänge von insgesamt ca. 35 km geschaffen.</p><p>An der renaturierten Ruhr hat sich schnell naturnaher Uferbewuchs eingestellt. Zudem verändert die Ruhr sich ständig. Laufverzweigungen und Inseln kommen und gehen.</p><p>Flüsse und Bäche beanspruchen je nach Typ unterschiedlich große Entwicklungsbreiten</p><p>Die berechneten Gewässerentwicklungsbreiten, die benötigt werden, um einen guten ökologischen Zustand erreichen zu können, weisen eine große Spannweite auf. In der Gewässerentwicklungsbreite ist sowohl die eigentliche Breite des Gewässers als auch die Breite enthalten, die ein Gewässer aktiv zum Beispiel bei Hochwasser umgestaltet. Wenn ein Fluss also eine Gewässerentwicklungsbreite von 50 m aufweist und das Gewässer selbst 10 Meter breit ist, werden links und rechts des Flusses also jeweils 20 Meter Fläche benötigt.</p><p>Bäche mit einem <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Einzugsgebiet#alphabar">Einzugsgebiet</a> größer als 10 Quadratkilometer benötigen, je nach Einzugsgebietsgröße und Gewässertyp, eine Entwicklungsbreite von 20 bis 40 Meter. Ihre Gewässerbreite beträgt natürlicherweise 4 bis 9 Meter. Noch kleinere Bäche mit einem Einzugsgebiet von weniger als 10 Quadratkilometer, sollten typischerweise Gewässerentwicklungsbreiten zwischen 7 und 14 Metern zur Verfügung gestellt bekommen.</p><p>Die Entwicklungsbreiten der kleinen Flüsse der Alpen und des Alpenvorlandes und die Mittelgebirgsflüsse betragen im Mittel 70 bis 110 Meter. Die potenziell natürliche Gewässerbreite dieser Gewässer liegt zwischen 15 und 22 Metern. Organisch geprägte Flüsse und Tieflandflüsse werden in der Regel bis 40 Meter breit. Das Ausmaß ihrer nötigen Gewässerentwicklungsbreite erreicht Werte von 150 bis über 200 Meter.</p><p>Werden die Einzugsgebiete der Flüsse noch größer und erreichen 1.000 bis 10.000 Quadratkilometer, nehmen auch ihr <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a> und ihre Breite zu. Diese großen Flüsse können in Einzelfällen bis zu 130 Meter breit werden. Im Normalfall sind es 40 bis 100 Meter. Sie können bereits über 500 Meter Gewässerentwicklungsbreite beanspruchen, um ihr vollständiges Strukturinventar entwickeln zu können. Die mittleren Breiten der Gewässerentwicklungskorridore werden für 25 verschiedene Fließgewässertypen in den <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/41_2025_texte_v2.pdf">Hydromorphologischen Steckbriefen</a> für verschiedene ökologische Gewässerzustände angegeben.</p><p>Darstellung der 3 methodischen Schritte und Anteile, welche die Breite des Gewässerentwicklungskorridors bestimmen.</p><p>Diagramm der Gewässerentwicklungskorridorbreiten in Abhängigkeit vom Gewässertyp</p><p>Literaturangaben</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BfN#alphabar">BfN</a> [Hrsg.] (2012): <a href="https://www.bfn.de/publikationen/schriftenreihe-naturschutz-biologische-vielfalt/nabiv-heft-124-oekosystemfunktionen">Ökosystemfunktionen von Flussauen - Analyse und Bewertung von Hochwasserretention, Nährstoffrückhalt, Kohlenstoffvorrat, Treibhausgasemissionen und Habitatfunktio</a>n. NaBiV Heft 124</p><p>BfN [Hrsg.] (2023): <a href="https://www.bfn.de/publikationen/broschuere/den-fluessen-mehr-raum-geben">Den Flüssen mehr Raum geben. Renaturierung von Auen in Deutschland</a></p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a> [Hrsg.] (2023): <a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Naturschutz/nbs_indikatorenbericht_2023_bf.pdf">Indikatorenbericht 2023 der Bundesregierung zur Nationalen Strategie zur biologischen Vielfalt</a></p><p>BMUV/<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> [Hrsg.] (2022): <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">Die Wasserrahmenrichtlinie – Gewässer in Deutschland 2021</a>. Fortschritte und Herausforderungen. Bonn, Dessau.</p><p>Bundesregierung (2023a): Aktionsprogramm Natürlicher <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>. Kabinettsbeschluss vom 29. März 2023</p><p>Bundesregierung (2023b): Nationale Wasserstrategie. Kabinettsbeschluss vom 15. März 2023</p><p>Ehlert, T. & S. Natho (2017): Auenrenaturierung in Deutschland – Analyse zum Stand der Umsetzung anhand einer bundesweiten Datenbank. Auenmagazin 12/2017.</p><p>Janssen, G., Wittig, S., Garack, S., Koenzen, U., Reuvers, C., Wiese, T., Wetzel, N. (2022): Wissenschaftlich fachliche Unterstützung der Nationalen Wasserstrategie - Kohärenz der flächenbezogenen Gewässerentwicklungsplanung gemäß WRRL mit der Raumplanung. Umweltbundesamt [Hrsg.] UBA -Texte 71/2022. Dessau.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a> [Hrsg.] (2016): <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a> Verfahrensempfehlung „Typspezifischer Flächenbedarf für die Entwicklung von Fließgewässern“ LFP Projekt O 4.13. Hintergrunddokument.</p><p>LAWA [Hrsg.] (2019b): LAWA-Verfahrensempfehlung zur Gewässerstrukturkartierung - Verfahren für mittelgroße bis große Fließgewässer.</p><p>Linnenweber, C., Koenzen, U., Steinrücke J. (2021): Gewässerentwicklungsflächen. Auenmagazin 20 / 2021. 4-9.</p><p>Müller, A., Kranl J., Pottgiesser, T., Schmidt,S., Albert, C., Greassidis, S., Stolpe H., Jolk C. (2025): Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a>. Umweltbundesamt [Hrsg.] UBA-Texte xx/2025: 92 Seiten, Dessau.</p><p>Statistisches Bundesamt (o. J.): FS 3 Land- und Forstwirtschaft, Fischerei, R. 5.1 Bodenfläche nach Art der tatsächlichen Nutzung, verschiedene Jahrgänge.</p><p>UBA [Umweltbundesamt, Hrsg.] (2023a): Flächenverfügbarkeit und Flächenbedarfe für den Ausbau der Windenergie an Land. CLIMATE CHANGE 32/2023. Autoren: Marian Bons, Martin Jakob, Thobias Sach, Dr. Carsten Pape, Christoph Zink, David Geiger, Dr. Nils Wegner, Olivia Boinski, Steffen Benz, Dr. Markus Kahles. Dessau.</p><p>WHG (2009): Wasserhaushaltsgesetz vom 31. Juli 2009 (BGBl. I S. 2585), das zuletzt durch Artikel 7 des Gesetzes vom 22. Dezember 2023 (BGBl. 2023 I Nr. 409) geändert worden ist.</p><p> <a href="https://www.lpv.de/uploads/tx_ttproducts/datasheet/DVL-Leitfaden_17_WRRL-web.pdf"><i></i> Kleine Fließgewässer kooperativ entwickeln</a> <a href="https://www.hcu-hamburg.de/fileadmin/documents/REAP/files/SCHWARK_etal_2005_Fliessgewaesserrenaturierung_heute_Effizienz_Umsetzungspraxis_BMBF-Abschlussbericht.pdf"><i></i> Schwark et al.: Fließgewässerrenaturierung heute – Effizienz und Umsetzungspraxis</a><a href="https://www.gewaesser-bewertung.de/"><i></i> UBA & LAWA: Informationsplattform zur Bewertung der Oberflächengewässer gemäß Europäischer Wasserrahmenrichtlinie</a> </p>
Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_522 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EI15 : Eider/Treene - Marschen und Niederungen. Es liegen insgesamt 54281 Messwerte vor. Es liegen außerdem 15 Probenentnahmen vor (siehe Resourcen).
Der Kartendienst (WMS-Gruppe) stellt die Geodaten zu originären Schutz(gebiets)kategorien des Landschaftsprogramms Saarland dar. Es handelt sich sowohl um Planungs- (LSG und WSG) als auch Bestandsdaten (Unzerschnittene Räume).:Es wird eine saarlandweite (außer "Biosphäre Bliesgau") Neukonzeption der Landschaftsschutzgebiete dargestellt. Im Bereich der „Biosphäre Bliesgau“ soll die Überarbeitung der Landschaftsschutzgebiete im Rahmen des ganzheitlichen Entwicklungsauftrages für das Biosphärenreservat erfolgen. Die Schwerpunkte der Neuordnung liegen auf: • den Auen der Fluss- und Bachtäler, insbesondere mit noch funktionsfähigen Retentionsflächen und be-sonderer Bedeutung für Arten- und Biotopschutz sowie Erholung, • den Freiräumen und Grünzügen auf der Siedlungsachse des mittleren Saartals, des Saarlouiser Be-ckens und des Neunkircher Verdichtungsraums, die sich unter hohem Siedlungsdruck befinden und gleichzeitig eine hohe Bedeutung als siedlungsnahe Freiräume besitzen, • den als besonders wertvoll bewerteten Kulturlandschaften des Saarlandes, • zu erhaltenden Offenlandbereichen mit Umnutzungstendenzen sowie Ausbreitung der Freizeitnutzung, • den durch die Expansion von Siedlung, Gewerbe oder Rohstoffwirtschaft gefährdeten Bereichen, in de-nen aus landschaftspflegerischer Sicht keine Bebauung oder Ausbeutung erfolgen sollte, • den Flächen mit hohem Erholungs- und Freizeitdruck bzw. verstärkter Bebauung im Außenbereich (z.B. Niedtal, Täler der Losheimer Schotterflur), • Landschaftsausschnitten mit besonderer Bedeutung für das Landschaftsbild und die Erholung (z.B. Saarschleife, Limberg, Litermont, Schaumberg, Weiselberg) sowie • Waldflächen mit besonderer Bedeutung für die Naherholung und den Naturhaushalt. Zur Vermeidung von Doppelausweisungen werden innerhalb dieser Räume liegende Naturschutzgebiete nicht in die Landschaftsschutzgebietsneuordnungskulisse aufgenommen. s. Landschaftsprogramm Saarland, Kapitel 6.6.2
Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)
Kupfer ist ein für die Ernährung aller Lebewesen essentielles Element, das jedoch bei einem extremen Überangebot zu toxischen Wirkungen führen kann. Der mittlere Cu-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 14 mg/kg. Analog zu Chrom und Nickel ist es vor allem in basischen Gesteinen angereichert (Diabase, Basalte, Metabasite). Die mittleren Cu-Gehalte (Mediane) der sächsischen Haupt-gesteinstypen reichen von 2 bis 67 mg/kg, der regionale Clarke des Erzgebirges/Vogtlandes beträgt 23 mg/kg. Geogene Cu-Anreicherungen sind vor allem im Erzgebirge über den hier weit verbreiteten Mineralisationen zu finden. Chalkopyrit (Kupferkies) ist nahezu in allen Mineralassoziationen als sog. Durchläufermineral verbreitet. Starke anthropogene Cu-Einträge werden vor allem durch die Buntmetallurgie verursacht. Durch die vielfältige Verwendung von Cu, u. a. in der Elektrotechnik, als Legierungsmetall, Rohrleitungsmaterial und Regenrinnen, wird das Element auch verstärkt in das Abwasser eingetragen. Für unbelastete Böden gelten Cu-Gehalte von 2 bis 40 mg/kg als normal. Die regionale Verteilung der Cu-Gehalte im Oberboden wird vor allem durch den geogenen Anteil der Substrate bestimmt. Auf Grund der erhöhten Cu-Gehalte der im Vogtland weit verbreiteten Diabase (58 mg/kg), der punktförmig auftretenden tertiären Basaltoide (60 mg/kg) und der lokal eingelagerten Amphibolite (46 mg/kg) des metamorphen Grundgebirges, kommt es zu anomal hohen Cu-Gehalten in den Verwitterungsböden über den genannten Festgesteinen. Durch eine verstärkte Lössbeeinflussung (mit relativ niedrigen Cu-Gehalten von ca. 12 mg/kg), kann es über Cu-reichen Substraten, je nach Lössanteil, zu einem "Verdünnungseffekt" kommen (z. B. über den Monzonitoiden bei Meißen). Extrem niedrige Cu-Konzentrationen sind in den Verwitterungsböden über sauren Magmatiten (Granit von Ei-benstock, Teplice-Rhyolith), Metagranitoiden (Erzgebirgs-Zentralzone), Sandsteinen (Elbsandstein- und Zittauer Gebirge) und bei Bodengesellschaften aus periglaziären sandigen Decksedimenten in Nordsachsen zu beobachten. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum, dem wichtigsten früheren Standort des Bergbaus und der Verhüttung polymetallischer Erze. Die anthropogenen Einträge sind aber i. W. auf die unmittelbare Umgebung der Hüttenstandorte beschränkt. Dabei kommt es zu Überlagerung mit geogenen Anteilen im Boden, die in ursächlichem Zusammenhang mit der Verbreitung von Kupferkies führenden Mineralassoziationen stehen. Analoge Verhältnisse finden sich, wenn auch in abgeschwächter Form, im Raum Schneeberg - Schwarzenberg - Annaberg-Buchholz - Marienberg. Besonders hohe Cu-Gehalte weisen die Auenböden der Freiberger Mulde auf. Nach Eintritt der Freiberger Mulde in das Freiberger Bergbau- und Hüttenrevier kommt es zu einer nachhaltigen stofflichen Belastung der Auenböden, die über die Aue der Vereinigten Mulde bis an die nördliche Landesgrenze reicht. Erhöhte Cu-Gehalte, jedoch auf deutlich niedrigerem Niveau, treten auch in den Auenböden der Zwickauer Mulde auf, wo sich im Einzugsgebiet die polymetallischen Vererzungen des Westerzgebirges befinden. Infolge der beschriebenen geogenen und anthropogenen Prozesse werden in den Auenböden der Freiberger und der Vereinigten Mulde die Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Grünlandnutzung (Schafhaltung) teilweise überschritten.
Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.
| Origin | Count |
|---|---|
| Bund | 2037 |
| Kommune | 106 |
| Land | 9731 |
| Wirtschaft | 3 |
| Wissenschaft | 80 |
| Zivilgesellschaft | 44 |
| Type | Count |
|---|---|
| Bildmaterial | 6 |
| Chemische Verbindung | 100 |
| Daten und Messstellen | 9181 |
| Ereignis | 18 |
| Förderprogramm | 687 |
| Gesetzestext | 4 |
| Infrastruktur | 31 |
| Kartendienst | 13 |
| Taxon | 28 |
| Text | 600 |
| Umweltprüfung | 68 |
| WRRL-Maßnahme | 756 |
| unbekannt | 496 |
| License | Count |
|---|---|
| geschlossen | 1158 |
| offen | 5582 |
| unbekannt | 5014 |
| Language | Count |
|---|---|
| Deutsch | 11653 |
| Englisch | 6210 |
| Resource type | Count |
|---|---|
| Archiv | 2170 |
| Bild | 412 |
| Datei | 989 |
| Dokument | 2046 |
| Keine | 6286 |
| Multimedia | 1 |
| Unbekannt | 20 |
| Webdienst | 888 |
| Webseite | 4559 |
| Topic | Count |
|---|---|
| Boden | 9621 |
| Lebewesen und Lebensräume | 9527 |
| Luft | 8545 |
| Mensch und Umwelt | 11730 |
| Wasser | 10558 |
| Weitere | 11754 |