Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.
Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Arsen im Feinstaub (As), Kohlenmonoxid (CO), Nickel im Feinstaub (Ni), Feinstaub (PM₁₀), Blei im Feinstaub (Pb). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.
Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Arsen im Feinstaub (As), Kohlenmonoxid (CO), Feinstaub (PM₁₀), Blei im Feinstaub (Pb). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.
Die Schutzgebiete stellen die Welterbestätten Berlins dar und sind durch Attribute des INSPIRE-Datenmodells "Schutzgebiete" beschrieben.
Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)
Die Messstelle 1382 Ludwigshafen am Rhein, Edigheim in Rheinland-Pfalz dient der Überwachung von Grundwasserstände. Zeitreihen abiotische Parameter werden derzeit nicht gemessen.
Our research efforts intend to contribute to the development of a syntaxonomical vegetation classification system for the entire Arctic territory. Such a system enables a proper identification of the vegetation types and consequently an evaluation of their biological and ecological importance on local, regional and circumpolar scales. We use a modified, modern version of the Braun-Blanquet approach. Special attention is paid to detailed analyses of the composition of the bryophyte and lichen flora within the sample plots as well as to a detailed analysis of habitat and distribution of the vegetation. We focus on Greenland which holds geographically an intermediate position between Eurosiberia and the North-America continent. The syntaxonomical survey includes characterization of the plant communities and their habitat and distribution. Vegetation mapping displays local and regional distribution. Comparative studies are carried out in - Alaska and Canada (Southwest Alaska, Nunuvat) and we closely cooperate with Russian, European and American geobotanists and landscape ecologists. Ongoing research: Survey of the vegetation of Northwest Greenland (between 70-73 degree N)- vegetation of eastern North Greenland (southem Mylius Erichsen Land and southern Kronsprins Christian Land)-classification of dwarf shrub and terricolous lichen vegetation-vegetation mapping (CAVM-project) and characterization and delimination of altitudinal belts in the inland of West Greenland (project AZV Greenland).
Der Untersuchungsraum liegt in einem Gebiet, das nachweisbar von der vorhandenen Industrie beeinflusst wurde und wird. Insbesondere in der Vergangenheit gelangten u.a. Schwermetalle über den Luftpfad auf die Oberböden. Da sich diese Stoffe nicht abbauen, sind auch heute noch erhöhte Gehalte – vor allem an Arsen und Kupfer - zu finden. Ab 2001 wurde auf Grundlage des Bundes-Bodenschutzgesetzes (BBodSchG) damit begonnen, alle vorhandenen Bodendaten im Hamburger Südosten zu erfassen und zusammen zuführen. Es wurden ausschließlich Daten von Probenahmestellen ausgewertet, die gewährleisten, dass Belastungen des Oberbodens nicht auf „Altlasten, schädliche Bodenveränderungen, altlastverdächtige Flächen oder Verdachtsflächen“ zurückzuführen sind. Die veröffentlichten Daten beinhalten die Arsen- und Schwermetallgehalte, die im Raster von 500 x 500 m enthalten sind. Es können mehrere Datensätze oder gar keine in diesem Raster vorliegen. Leere Kacheln bedeuten, dass keine Daten vorliegen.
Zielsetzung und Anlass: Die Eutrophierung stellt eine der größten ökologischen Bedrohungen der Ostsee dar, was sich aktuell in einer riesigen Todeszone (Sauerstoffmangel) am Meeresboden der tiefen Becken wiederspiegelt. Deshalb soll in dieser Machbarkeitsstudie eine nachhaltige marine Biomasse-Produktion des Blasentangs (Fucus vesiculosus) in Freilandversuchen in der Ostsee durchgeführt werden, um mit Hilfe dieser Makroalge eine Abreicherung von überschüssigen Nährstoffen herbeizuführen. In mehreren Schritten werden wir untersuchen inwiefern eine Hochskalierung vom Labor- zum offshore-Maßstab möglich und wie groß das Potenzial von großflächigen offshore-Freilandkulturen von Makroalgen ist. Weiterhin untersuchen wir ob die Biomasse umweltschonend produziert und als Wertstoff (Kosmetik), organischer Dünger, und/oder Biogas-Rohstoff (Energieträger) genutzt werden kann. Das Gesamtziel des Vorhabens in diesem Konsortium ist somit die Beurteilung der Chancen und Möglichkeiten von großflächigen Makroalgen-Freilandkulturen hinsichtlich: I. Schaffung eines regional möglichst geschlossenen Nährstoffkreislaufs zur Reduzierung der Nährstoffanreicherung in der südwestlichen Ostsee, II. Produktion von nachhaltigen Rohstoffen ohne dünge-, pflanzenschutz- und wasser-intensiven Landverbrauch, sowie III. Prüfung zusätzlicher Ertragsmöglichkeiten für Fischer und Einsparmöglichkeiten für Landwirte. Das vielfältige Potenzial der Ökosystemdienstleistungen von Blasentang-Freilandkulturen wird somit erstmalig experimentell in der Ostsee untersucht, und trägt zu den UN Nachhaltigkeitszielen bei. Das Projekt wird in enger Zusammenarbeit zwischen Wissenschaft und regionalen Stakeholdern (Fischer, Windparkbetreiber, Landwirte, Anlagenbetreiber für Biogas) durchgeführt. Arbeitsschritte und Methoden: Während der Projektdauer von drei Jahren bearbeiten wir vier Schwerpunkte: I. Kultivierung, II. Biomassecharakterisierung, III. Ernte und IV. Nutzung des Blasentangs. I. die bereits etablierte Nachzucht von Blasentang auf für die Freilandkultur geeignete Substrate wird optimiert. Danach wird die gut funktionierende Algenkultivierung vom Labor- und Mesokosmen-Maßstab zu mittleren Feldkulturen in der Eckernförder Bucht ( Prototyp einer Offshore-Kultur) heraufskaliert. Während all der Stufen der Hochskalierung werden die Effekte auf die Umwelt (abiotisch: Nährstoffgehalte, Sauerstoffkonzentration, pH; biotisch: Biodiversität organismisch und per eDNA) detailliert untersucht. Weiterhin soll die Zusammenarbeit mit Fischern und Windanlagenbetreibern als auch Genehmigungsbehörden (BSH, LLUR etc.) als Stakeholdern in Anspruch genommen werden, zu denen bereits intensive Kontakte bestehen. II. Die erzeugte Blasentasng-Biomasse wird ökophysiologisch und biochemisch charakterisiert, um bspw. Überlebensgrenzen, optimale Erntezeitpunkte und vielversprechende Wertstoffe zu identifizieren. III. Die Erntemethodik und Erstbehandlung an Land muss sorgfältig untersucht werden. Hier ist zum einen die Expertise von Fischern gefragt, die zumindest partiell von Fischfang auf die Wartung der Algenkulturen und die Algenernte umsteigen wollen. Der Schwerpunkt liegt auf der Nutzung der Biomasse an Land. Eine energieaufwändige Trocknung soll als Vorbehandlung vermieden werden. IV. Aus den biochemischen Analysen unter II. lassen sich bereits interessante Wertstoffe (Naturstoffe) z.B. für die kosmetische Industrie ableiten. Ansonsten ist die einfachste und bereits bewährte Nutzungsmöglichkeit das Einarbeiten der Algenbiomasse nach vorheriger Extraktion von Wertstoffen als Ersatz für mineralische Kunstdünger. Vor einer großflächigen und langfristigen Nutzung der Algenbiomasse als natürlicher Mineraldüngerersatz muss deren Belastung mit Schadstoffen, z.B. Schwermetallen, geprüft werden. (Text gekürzt)
Spurenelemente in sedimentären Abfolgen können sowohl positive als auch negative Aspekte haben. Positive Aspekte haben Spurenelements, weil (1) ihre Konzentrationsmuster als Proxies für die Rekonstruktion der Umweltbedingungen zum Zeitpunkt der Ablagerung verwendet werden können, (2) sie Informationen über diagenetische Prozesse liefern können und (3) sie abgebaut werden können, um den strategischen Mineralbedarf zu decken. Andererseits können sie aufgrund der Wasser-Gestein-Wechselwirkung in das Grundwasser gelangen, wo sie sich nachteilig auf die betrieblichen und gesundheitlichen Aspekte dieser kritischen Ressource auswirken. Wir wissen erstaunlich wenig über die beiden Spurenelemente As und Mo in karbonatischen Sedimenten. Dies erscheint überraschend, da Karbonate zu den am häufigsten vorkommenden Sedimentgesteinstypen gehören und As und Mo Elemente von erheblichem ökologischen und wissenschaftlichen Interesse sind. Um unser Verständnis zu verbessern, wird das übergeordnete Ziel der vorgeschlagenen Studie sein, die diagenetische Geschichte und die damit einhergehende Umverteilung von As und Mo in der Karbonatmatrix eines Grundwasserleiters zu entschlüsseln. Die Kombination dieser Informationen mit detaillierten mineralogischen Beobachtungen wird gekoppelte chemische Transportmodelle verbessern und dabei helfen, Bereiche, Regionen und Zeitalter potenzieller Kontaminationen zu identifizieren, was die Suche nach sicherem Trinkwasser unterstützen wird. Ein Prozessverständnis der diagenetischen Umverteilung von Mo und seinen Isotopen wird es ermöglichen Mo isotope als Werkzeug für die Rekonstruktion von Paläobedingungen während der Ablagerung von Karbonaten zu nutzen. Somit wird es die Möglichkeit der Paläorekonstruktion, in anderen marinen Umgebungen als euxinischen Becken, geben.
Origin | Count |
---|---|
Bund | 2996 |
Europa | 1 |
Kommune | 80 |
Land | 12942 |
Schutzgebiete | 5 |
Wissenschaft | 84 |
Zivilgesellschaft | 50 |
Type | Count |
---|---|
Chemische Verbindung | 39 |
Daten und Messstellen | 12615 |
Ereignis | 19 |
Förderprogramm | 2322 |
Gesetzestext | 1 |
Kartendienst | 2 |
Lehrmaterial | 2 |
Software | 3 |
Taxon | 3 |
Text | 464 |
Umweltprüfung | 30 |
unbekannt | 427 |
License | Count |
---|---|
geschlossen | 4291 |
offen | 8232 |
unbekannt | 3401 |
Language | Count |
---|---|
Deutsch | 15524 |
Englisch | 4114 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 3233 |
Bild | 25 |
Datei | 892 |
Dokument | 2542 |
Keine | 8293 |
Multimedia | 2 |
Unbekannt | 20 |
Webdienst | 815 |
Webseite | 6742 |
Topic | Count |
---|---|
Boden | 11507 |
Lebewesen und Lebensräume | 12031 |
Luft | 11641 |
Mensch und Umwelt | 15918 |
Wasser | 14227 |
Weitere | 15730 |