API src

Found 1251 results.

Related terms

GTS Bulletin: SMSN01 ESMT - Surface data (details are described in the abstract)

The SMSN01 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SM): Main synoptic hour A1A2 (SN): Sweden (Remarks from Volume-C: NilReason)

GTS Bulletin: SIVX21 EDZW - Surface data (details are described in the abstract)

The SIVX21 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SI): Intermediate synoptic hour (Remarks from Volume-C: SHIP)

GTS Bulletin: SIVX22 EDZW - Surface data (details are described in the abstract)

The SIVX22 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SI): Intermediate synoptic hour (Remarks from Volume-C: SHIP)

GTS Bulletin: SNVX21 EDZW - Surface data (details are described in the abstract)

The SNVX21 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SN): Non-standard synoptic hour (Remarks from Volume-C: SHIP)

Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, High-coverage CRNS application as network to target an areas' water distribution for periods of special field campaigns

Das Projekt "Forschungsgruppe (FOR) 2694: Large-Scale and High-Resolution Mapping of Soil Moisture on Field and Catchment Scales - Boosted by Cosmic-Ray Neutrons, High-coverage CRNS application as network to target an areas' water distribution for periods of special field campaigns" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-3 Agrosphäre.Die obere Bodenzone ist die zentrale Schnittstelle für die Speicherung und den Transfer von Wasser zwischen der Atmosphäre, der Biosphäre, den Oberflächengewässern und dem tieferen Untergrund. Die räumliche und zeitliche Variabilität seiner Eigenschaften und Zustände ist eine Herausforderung für das Verständnis und für die Quantifizierung des Wasserspeichers und daraus resultierender Wasserflüsse. Die Bestimmung der Bodenfeuchte ist entweder großflächig oder in Teilstücken der Einzugsgebiete möglich, dazu gehören hydrogeophysikalische Methoden (bodengestützt), verschiedene Fernerkundungsmethoden (Drohnen, Flugzeuge und Satelliten) oder invasive Bodenfeuchte-Netzwerke. Sie sind jedoch entweder nur durch zeitliche Momentaufnahmen begrenzt oder zu teuer, um auf ganze Einzugsgebiete oberhalb der Feldskala übertragen werden zu können. Bisher wurde die Methode der Detektion von Schwankungen des Neutronenhintergrunds (CRNS) als integrierende Messung der Bodenfeuchte in einer Fläche von ca. 15 Hektar eingesetzt. Verteilte Netzwerke dieser Sensoren gibt es bereits bis auf nationaler Ebene, jedoch mit Sensorabständen, die sehr viel größer sind als die CRNS-Integrationsfläche. Unser Ziel ist es, zeitliche Veränderungen des in Boden und Vegetation gespeicherten Wassers mit vollständiger Abdeckung auf der Skala von kleinen Einzugsgebieten bzw. hydrologischen Grundeinheiten (z.B. 1-10 km2), mit räumlicher Auflösung von wenigen Hektar und dichtem Abstand, vergleichbar mit der CRNS Integrationsfläche, zu messen. Dadurch lassen sich der nicht-invasive Charakter sowie die hohe Mobilität der CRNS-Sonden voll ausnutzen und kontinuierliche Bodenfeuchtekarten über einige Monate hinweg in einem bestimmten Gebiet erfassen. Dies wird eine raum-zeitliche Verteilung der Bodenfeuchte auch für landwirtschaftliche Felder und Waldstücke mit zeitlicher Auflösung im Stundenbereich liefern. Diese Messungen sollen auch zur Erprobung eines neu entwickelten Aufbaus einer CRNS Sonde mit winkelabhängiger Auflösung verwendet werden. Die geplanten Feldkampagnen sind ideal, um Daten für den Vergleich zu anderen Messmethoden (z.B. mobilem CRNS, Drohnenüberfliegungen) und zu hydrologischen Modellen zur Verfügung zu stellen. Die zu erfassenden Muster der raum-zeitlichen Variabilität bilden die Grundlage für die quantitative Beschreibung des Wasserhaushalts und hydrologischer Prozesse im Einzugsgebiet. Und durch eine örtliche Erweiterung des CRNS-Netzes könnte sie sogar in Zukunft auf größere Gebiete (z.B. größer als 10 km2) ausgedehnt werden. Dieses Teilprojekt wird eine Schlüsselrolle bei der Kartierung der Bodenfeuchte in kleinen Einzugsgebieten während der gemeinsamen Feldkampagnen der Forschergruppe sein. Insgesamt wird es erste CRNS-Bodenfeuchte-Karten auf einer Skala liefern, die mindestens eine Ordnung über den bestehenden Boden-Sensor-Netzwerken liegt.

Airglow-Forschung mit astronomischen Spektren

Das Projekt "Airglow-Forschung mit astronomischen Spektren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Augsburg, Institut für Physik.In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.

GTS Bulletin: ISND09 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND09 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10756;Feuchtwangen-Heilbronn;10761;Weißenburg;10765;Roth;10771;Kümmersbruck;10777;Gelbelsee;10782;Waldmünchen;10796;Zwiesel;10803;Freiburg;10818;Klippeneck;10827;Meßstetten;10837;Laupheim;10840;Ulm-Mähringen;10850;Harburg;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10863;Weihenstephan-Dürnast;10865;München-Stadt;10872;Gottfrieding;10875;Mühldorf;10945;Leutkirch-Herlazhofen;10954;Altenstadt;10963;Garmisch-Partenkirchen;10970;Bichl;10982;Chieming;) (Remarks from Volume-C: SYNOP)

GTS Bulletin: ISND08 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND08 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10564;Schleiz;10565;Osterfeld;10569;Plauen;10574;Carlsfeld;10577;Chemnitz;10579;Marienberg;10582;Zinnwald-Georgenfeld;10591;Lichtenhain-Mittelndorf;10615;Deuselbach;10628;Geisenheim;10635;Kleiner Feldberg/Taunus;10646;Neuhütten/Spessart;10648;Michelstadt-Vielbrunn;10658;Kissingen, Bad;10671;Lautertal-Oberlauter;10686;Wunsiedel-Schönbrunn;10704;Berus;10706;Tholey;10724;Weinbiet;10733;Waibstadt;10736;Mühlacker;10739;Stuttgart (Schnarrenberg);10747;Kaisersbach-Cronhütte;) (Remarks from Volume-C: SYNOP)

GTS Bulletin: ISID01 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISID01 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISI): Intermediate synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10004;UFS TW Ems;10015;Helgoland;10020;List auf Sylt;10035;Schleswig;10055;Fehmarn;10147;Hamburg-Fuhlsbüttel;10162;Schwerin;10184;Greifswald;10200;Emden;10224;Bremen;10270;Neuruppin;10338;Hannover;10361;Magdeburg;10393;Lindenberg;10400;Düsseldorf;10469;Leipzig/Halle;10488;Dresden-Klotzsche;10506;Nürburg-Barweiler;10548;Meiningen;10637;Frankfurt/Main;10685;Hof;10738;Stuttgart-Echterdingen;10763;Nürnberg;10788;Straubing;10852;Augsburg;10946;Kempten;) (Remarks from Volume-C: SYNOP)

GTS Bulletin: ISMD09 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISMD09 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISM): Main synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10756;Feuchtwangen-Heilbronn;10761;Weißenburg;10765;Roth;10771;Kümmersbruck;10777;Gelbelsee;10782;Waldmünchen;10796;Zwiesel;10803;Freiburg;10818;Klippeneck;10827;Meßstetten;10837;Laupheim;10840;Ulm-Mähringen;10850;Harburg;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10863;Weihenstephan-Dürnast;10865;München-Stadt;10872;Gottfrieding;10875;Mühldorf;10945;Leutkirch-Herlazhofen;10954;Altenstadt;10963;Garmisch-Partenkirchen;10970;Bichl;10982;Chieming;) (Remarks from Volume-C: SYNOP)

1 2 3 4 5124 125 126