In den ZTV E-StB werden die RC-Baustoffe und industriellen Nebenprodukte nur insoweit behandelt, als sie mit natürlichen mineralischen Baustoffen vergleichbar sind. Sofern sie nicht vergleichbar sind, werden gesonderte Untersuchungen erforderlich, die jedoch nicht weiter beschrieben sind. Die Übertragbarkeit der Einbau- und Verdichtungsanforderungen für Boden und Fels ist nicht in jedem Fall gegeben. Da die Palette der vorgenannten Stoffe sehr groß ist, soll im Sinne einer Datensammlung geklärt werden, in welchem Umfang die verschiedenen Stoffe bisher überhaupt bei Erdbauten zur Anwendung gekommen sind, wobei nach den verschiedenen Bauwerkstypen wie Verkehrsdämmen, Hinterfüllungen, Sickeranlagen, Abdichtungen, Bodenverbesserungen, Lärmschutzwällen u. a. zu unterscheiden sein wird (Region Süd). Weiterhin soll geklärt werden, welche Anforderungen in der Praxis an die diversen RC-Baustoffe und industriellen Nebenprodukte bei verschiedenen Bauprojekten gestellt wurden, wie Art und Umfang der Eignungsprüfungen der Baustoffe festgelegt wurden und welche Prüfverfahren bei der Qualitätssicherung in-situ zum Einsatz kamen. Die diesbezüglichen Erfahrungen sind zusammenzutragen und auszuwerten.
As part of the CDRmare joint project GEOSTOR (https://geostor.cdrmare.de/), the BGR created detailed static geological 3D models for two potential CO2 storage structures in the Middle Buntsandstein in the Exclusive Economic Zone (EEZ) of the German North Sea and supplemented them with petrophysical parameters (e.g. porosities, permeabilities). The 3D geological model (Pilot area A; ~1300 km2) is located on the West Schleswig Block in the area of the Henni salt pillow (pilot region A). It is based on 2D seismic data from various surveys and geophysical/geological information from four exploration wells. The model comprises 14 generalized faults and the following 14 horizon surfaces: 1) Sea Floor, 2) Mid Miocene Unconformity, 3) Base Rupelian, 4) Base Tertiary, 5) Base Upper Cretaceous, 6) Base Lower Cretaceous, 7) Base Muschelkalk, 8) Base Röt (Pelite), 9) Base Röt (Salinar), 10) Base Solling Formation, 11) Base Detfurth Formation, 12) Base Volpriehausen Formation, 13) Base Triassic, 14) Base Zechstein. The selected potential reservoir structure in the Middle Buntsandstein is formed by an anticline created by the uplift of the underlying Henni salt pillow. The primary reservoir unit is the 40-50 m thick Lower Volpriehausen Sandstone, the main sealing units are the Röt and the Lower Cretaceous. Petrophysical analyses of all considered well data were conducted and reservoir properties (including porosity and permeability) were calculated to determine the static reservoir capacity for these potential CO2 storage structures. Both models were parameterized and can be used for further dynamic simulations of storage capacity, geo-risk, and infrastructure analyses, in order to develop a comprehensive feasibility study for potential CO2 storage within the project framework. The 3D models were created by the BGR between 2021 and 2024. SKUA-GOCAD was used as the modeling software. We would like to thank AspenTech for providing licenses for their SSE software package as part of the Academic Program (https://www.aspentech.com/en/academic-program).
Untersuchung der Wechselwirkungen zwischen mineralischen Abdichtungsmaterialien und Deponiesickerwaessern; Pruefung unterschiedlicher Materialien; Langzeitprognosen; Qualitative und quantitative Untersuchungen zu geochemischen, mineralischen und geotechnischen Veraenderungen.
Das Forschungsvorhaben untersucht auf der einen Seite die Auswirkungen der Wassereinspritzung auf das Betriebsverhalten eines Radialverdichters. Die Wassereinspritzung in Axialverdichtern von Gasturbinen ist eine gängige Praxis, um die Leistungsfähigkeit der Turbine zu verbessern. Um dieses Potenzial auch in Radialverdichtern zu nutzen, sind weitere Forschungsarbeiten im Bereich der Flüssigkeitseinspritzung notwendig. Die Radialverdichter werden hauptsächlich in der Prozessindustrie eingesetzt. Ziel dieses Projektes ist es die Berechnung und Einflüsse der Wassereinspritzung auf das Betriebskennfeld eines Radialverdichters zu untersuchen. Im Projekt (FKZ: 03EE5035B) wurde ein Radialverdichter mit Wassereinspritzung aufgebaut und Kennfelder mit und ohne Wassereinspritzung vermessen. Unklar ist das Potenzial der Wassereinspritzung, welches durch den Ort der Verdunstung bestimmt wird, welches hier adressiert werden soll. Im zweiten Thema wird die Abdichtung der Wellenenden, die verhindert, dass das Prozessfluid aus der Maschine in die Atmosphäre entweicht. Die Forschung an berührungslosen Gleitringdichtungen mit Trockengasschmierung DGS (Dry Gas Seals), wird aufgrund des geringen und kontrollierbaren Leckagestroms, des berührungslosen Betriebs und der Eignung für die Hochdruckumgebung, als Dichtungslösung eingesetzt. Im Projekt (FKZ: 03EE5041H) wurden die Prognosemodelle zur Berechnung des Dichtspaltes entwickelt und in ein digitales Zwillingsmodell implementiert. Die gesamte Architektur des digitalen Zwillings basierend auf einer Open Source IoT-Plattform. Im neuen Projekt wird das Gesamtkonzept auf eine reale Maschine übertragen. Die messbaren und nicht messbaren Prozessgrößen der realen Anlage und ihre logischen Zusammenhänge werden mit Hilfe von maschinellem Lernen und physikbasierten Modellen analysiert. Die Ergebnisse werden zur Leistungsoptimierung von Radialverdichtern in der Prozessindustrie genutzt.
Die Kapillarsperre ist eine alternative Dichtung zur Abschirmung von Altlasten und Abfalldeponien. Niederschlagseintrag wird minimiert zum einen durch stark evapotranspirierenden Bewuchs, wie z.B. Nadelwald, zum anderen durch die Wasserableitung in einer geneigten Feinsandschicht ueber einem Grobsand. Es wurden Versuche an einer neigbaren Kipprinne durchgefuehrt.
Aktuelle Hochwasserinformation Was ist Hochwasser? Hochwassersituation in Berlin Hochwasservorsorge Maßnahmen Ihre Vorsorgemaßnahmen Über die Hochwassersituation in Spree und Havel können Sie sich auf den Seiten des Landes Brandenburg informieren. Hochwasserschutz Hochwasserinformationen im Wasserportal Berlin Nach Gesetz ist Hochwasser „(…) eine zeitlich beschränkte Überschwemmung von normalerweise nicht mit Wasser bedecktem Land, insbesondere durch oberirdische Gewässer (…). Davon ausgenommen sind Überschwemmungen aus Abwasseranlagen.“ Hochwasser kann somit auch durch Starkregen verursacht werden. Fachlich wird zwischen Überflutungen (pluviale Hochwasser) und Überschwemmungen (fluviale Hochwasser) unterschieden. Überflutungen (pluviale Ereignisse) entstehen, wenn Starkregen vor allem in urbanen Gebieten zu einer schnellen Wasseransammlung führt. Dies kann die Kapazitäten des Kanalsystems und der Entwässerungsinfrastruktur überschreiten und zu Überflutungen führen, die auch abseits von Flüssen und Bächen auftreten. Abweichend von der gesetzlichen Definition umfasst die Definition der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA-A 118) Überflutungen auch Situationen, in denen Wasser aus einem Entwässerungssystem austritt und dadurch Schäden oder erhebliche Funktionsstörungen verursacht. Diese Art der Überflutung betrifft vor allem städtische Gebiete, in denen ein hoher Versiegelungsgrad (vgl. Umweltatlaskarte Versiegelung ) eine natürliche Versickerung des Wassers behindert. Mehr Information zum Thema Überflutung und Starkregen finden Sie im Umweltatlas . Überschwemmungen (fluviale Ereignisse) entstehen, wenn Flüsse aufgrund anhaltender Niederschläge, Starkregenereignisse oder Schneeschmelze überlastet sind und über die Ufer treten. Eine detaillierte Beschreibung zu Hochwasser und Überschwemmungen findet sich im Umweltatlas . Mehr Information zum Thema Überflutung und Starkregen In Berlin können Hochwasser durch starke oder langanhaltende Niederschläge entstehen. Je nach Regenereignis unterscheiden sich die Hochwasserwellen. Starkniederschläge sind häufig in den Sommermonaten als Folge von Gewitterfronten zu beobachten. Sie weisen die größten Niederschlagintensitäten auf, sind räumlich begrenzt und haben eine relativ kurze Dauer. Starkniederschläge sind Hauptursache für schnell ansteigende Hochwasserwellen, wie z.B. an der Panke, können aber auch berlinweit zu Überflutungen führen. Durch den hohen Versiegelungsgrad in der Stadt wird die Bildung eines derartigen Hochwassers deutlich beschleunigt. Durch hohe Niederschläge ausgelöste Flusshochwasser ereigneten sich zum Beispiel am 30.07.2011 an der Erpe in Berlin-Köpenick, in der Nacht vom 21. zum 22.08.2012 sowie am 27.07.2016 an der Panke – Land unter an der Panke . Langanhaltende Niederschläge in größeren Einzugsgebietsflächen sind Hauptursache für Hochwasser am Tegeler Fließ, der Müggelspree und Havel. Derartige Hochwasserwellen laufen in den betroffenen Gewässern deutlich flacher ab, halten sich aber relativ länger. Hochwasservorsorge ist eine gesellschaftliche Gemeinschaftsaufgabe. Der Schlüssel zur Begrenzung von Hochwasserschäden liegt im Zusammenwirken von staatlicher Vorsorge und eigenverantwortlichem Handeln des Einzelnen. Deshalb fordert das Wasserhaushaltsgesetz des Bundes (WHG), neben zentralen Maßnahmen zum Hochwasserschutz, jeden Einzelnen auf sich und sein Eigentum vor Hochwasserfolgen zu schützen: Jede Person, die durch Hochwasser betroffen sein kann, ist im Rahmen des ihr Möglichen und Zumutbaren verpflichtet, geeignete Vorsorgemaßnahmen zum Schutz vor nachteiligen Hochwasserfolgen und zur Schadensminderung zu treffen, insbesondere die Nutzung von Grundstücken den möglichen nachteiligen Folgen für Mensch, Umwelt oder Sachwerte durch Hochwasser anzupassen. (§ 5 (2) WHG (2009)) Die Länder sind verpflichtet, Maßnahmen zum vorbeugenden und technischen Hochwasserschutz umzusetzen, wenn diese wirtschaftlich geboten bzw. vertretbar und räumlich integrierbar sind. Einem Hochwasser kann durch Wasserrückhalt (Retention) in der Aue vorgebeugt werden. Die Potenziale für den vorbeugenden Hochwasserschutz hängen von verfügbaren Retentionsräumen ab. Die größtmögliche Speicherwirkung von Hochwasserwellen erreichen ausgedehnte Überflutungsauen. Solche Auenbereiche sind jedoch im urbanen Raum nahezu unwiderruflich überformt bzw. werden intensiv genutzt. Deshalb ist es wesentlich, den Wasserrückhalt in der verbleibenden Fläche zu verbessern und vorhandene Rückhalteräume optimal zu nutzen. Auch zentrales und dezentrales Regenwassermanagement sowie verbesserte Prognose- und Frühwarnsysteme sind wichtige Bausteine. Dort, wo es wirtschaftlich geboten und räumlich umsetzbar ist, können technische Maßnahmen zum Hochwasserschutz (z.B. Bau von Deichen) einen wesentlichen Beitrag zur Minimierung von regionalen Hochwasserschäden leisten. In Berlin werden Maßnahmen zur Verbesserung des Hochwasserschutzes im Rahmen der Gewässerentwicklungskonzepte (GEK) geplant und umgesetzt (vergleiche z.B. GEK Panke ). Maßnahmen zur Entschärfung der Hochwassersituation, die zugleich auch die Ökologie eines Gewässers fördern, sind z.B. Aufweitungen des Gewässerbettes, Rückhalt in der Aue durch Remäandrierungen. Im urbanen Raum sind diese Möglichkeiten aufgrund der vorhandenen Nutzungen jedoch begrenzt. Für einen nachhaltigen Hochwasserschutz in Berlin ist letztendlich auch eine aktive Zusammenarbeit zwischen den Ländern Berlin und Brandenburg erforderlich. Durch den hohen Versiegelungsgrad wird der Oberflächenabfluss stark beschleunigt, so dass die Reaktionszeiten bei der Entstehung von Hochwasser infolge lokaler Starkregenereignisse gering sind. Deshalb sind vor allem dauerhaft wirkende Schutzmaßnahmen im Rahmen der Eigenvorsorge gemäß § 5 (2) WHG in Risikogebieten sinnvoll. Hierzu gehört insbesondere der Schutz von Gebäudeöffnungen gegen eindringendes Wasser (hochgezogene Kellerschächte, Abdichtung von Türen und Fenstern, druckdichte Fenster). Weitere Informationen finden Sie in der Hochwasserschutzfibel des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen (PDF, 23.1 MB) . Überprüfen Sie zusätzlich, ob Schäden durch Überschwemmungen von Ihrer Gebäude- bzw. Hausratversicherung abgedeckt sind. Anbieter einer sogenannten Elementarschadensversicherung finden Sie auf den Seiten des Gesamtverbandes der Deutschen Versicherungswirtschaft .
Wir fuehren unter Einsatz vorhandener Laborgeraete Untersuchungen von Geotextilien durch, und zwar hinsichtlich ihrer mechanischen, pneumatischen und hydraulischen Belastbarkeit als Basis- und Seitenabdichtung von Altlastflaechen und Deponieflaechen. Es werden individuelle Angebote auf Anfrage entwickelt.
Die zum 1. August 2002 inkraftgetretene Deponieverordnung des Bundes (DepV) fordert ab 31.05.2002, in Ausnahmefällen ab 31.05.2009, die Beendigung der bisher üblichen Siedlungsabfalldeponierung. Auf den zahlreichen, daraufhin zu schließenden Siedlungsabfalldeponien sind dann entsprechende Oberflächenabdichtungssysteme aufzubringen. Für Hausmülldeponien sieht die Deponieverordnung ein Regel-Oberflächenabdichtungssystem vor (vgl. Anhang 1 Nr. 2 DK II DepV), dass unter Experten als vielfach nicht zielführend angesehen wird. Kritisiert wird unter anderem die Haltbarkeit der Kunststoffdichtungsbahn, die für den Bewuchs nicht ausreichende Mächtigkeit der Rekultivierungsschicht und die Austrocknungs- und Rissbildungsgefahr in der unter der Kunststoffdichtungsbahn gelegenen mineralischen Ton-Dichtungsschicht. Eine Entlassung aus der Nachsorgeverantwortung für die Oberflächenabdichtung einer Deponie wird nur dann realistisch sein, wenn diesen Problemaspekten ausreichend Rechnung getragen worden ist. Um dies zu erreichen, ist es erforderlich, deponiespezifisch besser geeignete Oberflächenabdichtungssysteme zu entwickeln. Vor diesem Hintergrund sollen Dichtungssysteme untersucht werden, die vollständig aus vor Ort verfügbarem Boden- oder anderem Inertmaterial aufgebaut sind. Derartige Systeme bieten folgende Vorteile: 1) anders als Kunststoffdichtungsbahnen ist Boden- und Inertmaterial und somit die gesamte Konstruktion des Dichtungssystems praktisch unbegrenzt haltbar; 2) der gesamte Dichtungsquerschnitt steht dem Bewuchs für eine tiefe Wurzelverankerung sowie hohe Wasserspeicherung und -nachlieferung zur Verfügung; 3) die Schichten des Dichtungssystems und der Bewuchs können an die jeweiligen meteorologischen Verhältnisse so angepasst werden, dass das Dichtungssystem genügend feucht bleibt, damit es dauerhaft plastisch und somit setzungstolerant ist; 4) eindringendes Niederschlagswasser kann durch Speicherung und bewuchsabhängige Evapotranspiration dauerhaft zurückgehalten werden, so dass es nicht in den Deponiekörper eindringen kann; 5) eventuell noch an die Deponieoberfläche drängende Deponiegase können flächig verteilt eine ausreichende belebt-durchwurzelte Bodenschicht passieren, so dass das im Deponiegas enthaltene Methan oxidiert werden kann.
| Origin | Count |
|---|---|
| Bund | 976 |
| Land | 71 |
| Wissenschaft | 7 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Förderprogramm | 873 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 3 |
| Text | 132 |
| Umweltprüfung | 17 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 154 |
| offen | 890 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 976 |
| Englisch | 111 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 5 |
| Dokument | 87 |
| Keine | 655 |
| Multimedia | 1 |
| Webdienst | 4 |
| Webseite | 319 |
| Topic | Count |
|---|---|
| Boden | 774 |
| Lebewesen und Lebensräume | 725 |
| Luft | 509 |
| Mensch und Umwelt | 1051 |
| Wasser | 580 |
| Weitere | 1002 |