Diese Gebiete sind durch den Einfluss von Wasser geprägt und werden anhand der Moore, Auen, Gleye und Kolluvien abgegrenzt. Sie kennzeichnen den natürlichen Einflussbereich des Wassers, in dem es zu Überschwemmungen und Überspülungen kommen kann. Nutzungen können hier beeinträchtigt werden durch: über die Ufer tretende Flüsse und Bäche, zeitweise hohen Wasserabfluss in sonst trockenen Tälern oder zeitweise hoch anstehendes Grundwasser. Im Unterschied zu amtlich festgesetzten oder für die Festsetzung vorgesehenen Überschwemmungsgebieten kann bei diesen Flächen nicht angegeben werden, wie wahrscheinlich Überschwemmungen sind. Die Flächen können je nach örtlicher Situation ein häufiges oder auch ein extremes Hochwasserereignis abdecken. An kleineren Gewässern, an denen keine Überschwemmungsgebiete oder Hochwassergefahrenflächen vorliegen kann die Darstellung der wassersensiblen Bereiche Hinweise auf mögliche Überschwemmungen und hohe Grundwasserstände geben und somit zu Abschätzung der Hochwassergefahr herangezogen werden. Die wassersensiblen Bereiche werden auf der Grundlage der Übersichtsbodenkarte im Maßstab 1 : 25 000 erarbeitet. Diese Karten enthalten keine Grundstücksgrenzen. Die Betroffenheit einzelner Grundstücke kann deshalb nicht abgelesen werden. Die Darstellung der wassersensiblen Bereiche erfolgt in einem Maßstabsbereich von ca. 1 : 9 000 bis 1: 750 000.
Die pneumatische Spuelung stellt eine Moeglichkeit der Wasserforschung mittels Druckluft in Rohrleitungen dar. Das Wasser wird bei einer Spuelung mit Hilfe der Druckluft mit relativ hoher Geschwindigkeit ganz oder teilweise aus der Leistung gedrueckt. Der Zusammenhang zwischen Luftdruck und Abflussgeschwindigkeit bei einer pneumatischen Spuelung soll allgemeingueltig theoretisch hergeleitet werden und durch Versuche und eventuell an bestehenden Anlagen ueberprueft werden.
Die Bundesanstalt für Gewässerkunde sammelt im Rahmen der Verwaltungsvereinbarung über den Datenaustausch im Umweltbereich, Ziffer 12.02. Oberirdische Binnengewässer des Anhangs I., Wasserstands-, Abfluss- und Stammdaten ausgewählter Pegel von den Ländern. Die Bereitstellung der o.g. Daten durch die Länder dient der Erfüllung der der Bundesrepublik Deutschland zufallenden Aufgaben aus supra- und internationalen Übereinkommen und Verpflichtungen. Darüber hinaus hat der Bund die Aufgabe, ein Gesamtbild zu wasserrelevanten Aspekten über die Ländergrenzen hinweg zu erstellen, um die Informationsbedürfnisse erfüllen zu können. Dieser Metadatensatz beschreibt "Umweltüberwachungseinrichtungen (EnvironmentalMonitoringFacility)" als Objektart des INSPIRE Annex-Thema III "Umweltüberwachung".
Nichtamtliches Inhaltsverzeichnis Inhaltsübersicht Kapitel 1 Allgemeine Bestimmungen § 1 Zweck § 2 Anwendungsbereich § 3 Begriffsbestimmungen § 4 Gewässereigentum, Schranken des Grundeigentums § 5 Allgemeine Sorgfaltspflichten Kapitel 2 Bewirtschaftung von Gewässern Abschnitt 1 Gemeinsame Bestimmungen § 6 Allgemeine Grundsätze der Gewässerbewirtschaftung § 6a Grundsätze für die Kosten von Wasserdienstleistungen und Wassernutzungen § 7 Bewirtschaftung nach Flussgebietseinheiten § 8 Erlaubnis, Bewilligung § 9 Benutzungen § 10 Inhalt der Erlaubnis und der Bewilligung § 11 Erlaubnis-, Bewilligungsverfahren § 11a Verfahren bei Vorhaben zur Erzeugung von Energie aus erneuerbaren Quellen § 12 Voraussetzungen für die Erteilung der Erlaubnis und der Bewilligung, Bewirtschaftungsermessen § 13 Inhalts- und Nebenbestimmungen der Erlaubnis und der Bewilligung § 13a Versagung und Voraussetzungen für die Erteilung der Erlaubnis für bestimmte Gewässerbenutzungen; unabhängige Expertenkommission § 13b Antragsunterlagen und Überwachung bei bestimmten Gewässerbenutzungen; Stoffregister § 14 Besondere Vorschriften für die Erteilung der Bewilligung § 15 Gehobene Erlaubnis § 16 Ausschluss privatrechtlicher Abwehransprüche § 17 Zulassung vorzeitigen Beginns § 18 Widerruf der Erlaubnis und der Bewilligung § 19 Planfeststellungen und bergrechtliche Betriebspläne § 20 Alte Rechte und alte Befugnisse § 21 Anmeldung alter Rechte und alter Befugnisse § 22 Ausgleich zwischen konkurrierenden Gewässerbenutzungen § 23 Rechtsverordnungen zur Gewässerbewirtschaftung § 24 Erleichterungen für EMAS-Standorte Abschnitt 2 Bewirtschaftung oberirdischer Gewässer § 25 Gemeingebrauch § 26 Eigentümer- und Anliegergebrauch § 27 Bewirtschaftungsziele für oberirdische Gewässer § 28 Einstufung künstlicher und erheblich veränderter Gewässer § 29 Fristen zur Erreichung der Bewirtschaftungsziele § 30 Abweichende Bewirtschaftungsziele § 31 Ausnahmen von den Bewirtschaftungszielen § 32 Reinhaltung oberirdischer Gewässer § 33 Mindestwasserführung § 34 Durchgängigkeit oberirdischer Gewässer § 35 Wasserkraftnutzung § 36 Anlagen in, an, über und unter oberirdischen Gewässern § 37 Wasserabfluss § 38 Gewässerrandstreifen § 38a Landwirtschaftlich genutzte Flächen mit Hangneigung an Gewässern § 39 Gewässerunterhaltung § 40 Träger der Unterhaltungslast § 41 Besondere Pflichten bei der Gewässerunterhaltung § 42 Behördliche Entscheidungen zur Gewässerunterhaltung Abschnitt 3 Bewirtschaftung von Küstengewässern § 43 Erlaubnisfreie Benutzungen von Küstengewässern § 44 Bewirtschaftungsziele für Küstengewässer § 45 Reinhaltung von Küstengewässern Abschnitt 3a Bewirtschaftung von Meeresgewässern § 45a Bewirtschaftungsziele für Meeresgewässer § 45b Zustand der Meeresgewässer § 45c Anfangsbewertung § 45d Beschreibung des guten Zustands der Meeresgewässer § 45e Festlegung von Zielen § 45f Überwachungsprogramme § 45g Fristverlängerungen; Ausnahmen von den Bewirtschaftungszielen § 45h Maßnahmenprogramme § 45i Beteiligung der Öffentlichkeit § 45j Überprüfung und Aktualisierung § 45k Koordinierung § 45l Zuständigkeit im Bereich der deutschen ausschließlichen Wirtschaftszone und des Festlandsockels Abschnitt 4 Bewirtschaftung des Grundwassers § 46 Erlaubnisfreie Benutzungen des Grundwassers § 47 Bewirtschaftungsziele für das Grundwasser § 48 Reinhaltung des Grundwassers § 49 Erdaufschlüsse Kapitel 3 Besondere wasserwirtschaftliche Bestimmungen Abschnitt 1 Öffentliche Wasserversorgung, Wasserschutzgebiete, Heilquellenschutz § 50 Öffentliche Wasserversorgung; Ermächtigung zum Erlass von Rechtsverordnungen § 51 Festsetzung von Wasserschutzgebieten § 52 Besondere Anforderungen in Wasserschutzgebieten § 53 Heilquellenschutz Abschnitt 2 Abwasserbeseitigung § 54 Begriffsbestimmungen für die Abwasserbeseitigung § 55 Grundsätze der Abwasserbeseitigung § 56 Pflicht zur Abwasserbeseitigung § 57 Einleiten von Abwasser in Gewässer § 58 Einleiten von Abwasser in öffentliche Abwasseranlagen § 59 Einleiten von Abwasser in private Abwasseranlagen § 60 Abwasseranlagen § 61 Selbstüberwachung bei Abwassereinleitungen und Abwasseranlagen Abschnitt 3 Umgang mit wassergefährdenden Stoffen § 62 Anforderungen an den Umgang mit wassergefährdenden Stoffen § 62a Nationales Aktionsprogramm zum Schutz von Gewässern vor Nitrateinträgen aus Anlagen § 63 Eignungsfeststellung Abschnitt 4 Gewässerschutzbeauftragte § 64 Bestellung von Gewässerschutzbeauftragten § 65 Aufgaben von Gewässerschutzbeauftragten § 66 Weitere anwendbare Vorschriften Abschnitt 5 Gewässerausbau, Deich-, Damm- und Küstenschutzbauten § 67 Grundsatz, Begriffsbestimmung § 68 Planfeststellung, Plangenehmigung § 69 Abschnittsweise Zulassung, vorzeitiger Beginn § 70 Anwendbare Vorschriften, Verfahren § 70a Planfeststellungsverfahren bei Häfen im transeuropäischen Verkehrsnetz § 71 Enteignungsrechtliche Regelungen § 71a Vorzeitige Besitzeinweisung Abschnitt 6 Hochwasserschutz § 72 Hochwasser § 73 Bewertung von Hochwasserrisiken, Risikogebiete § 74 Gefahrenkarten und Risikokarten § 75 Risikomanagementpläne § 76 Überschwemmungsgebiete an oberirdischen Gewässern § 77 Rückhalteflächen, Bevorratung § 78 Bauliche Schutzvorschriften für festgesetzte Überschwemmungsgebiete § 78a Sonstige Schutzvorschriften für festgesetzte Überschwemmungsgebiete § 78b Risikogebiete außerhalb von Überschwemmungsgebieten § 78c Heizölverbraucheranlagen in Überschwemmungsgebieten und in weiteren Risikogebieten § 78d Hochwasserentstehungsgebiete § 79 Information und aktive Beteiligung § 80 Koordinierung § 81 Vermittlung durch die Bundesregierung Abschnitt 7 Wasserwirtschaftliche Planung und Dokumentation § 82 Maßnahmenprogramm § 83 Bewirtschaftungsplan § 84 Fristen für Maßnahmenprogramme und Bewirtschaftungspläne § 85 Aktive Beteiligung interessierter Stellen § 86 Veränderungssperre zur Sicherung von Planungen § 87 Wasserbuch § 88 Informationsbeschaffung und -übermittlung Abschnitt 8 Haftung für Gewässerveränderungen § 89 Haftung für Änderungen der Wasserbeschaffenheit § 90 Sanierung von Gewässerschäden Abschnitt 9 Duldungs- und Gestattungsverpflichtungen § 91 Gewässerkundliche Maßnahmen § 92 Veränderung oberirdischer Gewässer § 93 Durchleitung von Wasser und Abwasser § 94 Mitbenutzung von Anlagen § 95 Entschädigung für Duldungs- und Gestattungsverpflichtungen Kapitel 4 Entschädigung, Ausgleich, Vorkaufsrecht § 96 Art und Umfang von Entschädigungspflichten § 97 Entschädigungspflichtige Person § 98 Entschädigungsverfahren § 99 Ausgleich § 99a Vorkaufsrecht Kapitel 5 Gewässeraufsicht § 100 Aufgaben der Gewässeraufsicht § 101 Befugnisse der Gewässeraufsicht § 102 Gewässeraufsicht bei Anlagen und Einrichtungen der Verteidigung Kapitel 6 Bußgeld- und Überleitungsbestimmungen § 103 Bußgeldvorschriften § 104 Überleitung bestehender Erlaubnisse und Bewilligungen § 104a Ausnahmen von der Erlaubnispflicht bei bestehenden Anlagen zur untertägigen Ablagerung von Lagerstättenwasser § 105 Überleitung bestehender sonstiger Zulassungen § 106 Überleitung bestehender Schutzgebietsfestsetzungen § 107 Übergangsbestimmung für industrielle Abwasserbehandlungsanlagen und Abwassereinleitungen aus Industrieanlagen § 108 Übergangsbestimmung für Verfahren zur Zulassung von Vorhaben zur Erzeugung von Energie aus erneuerbaren Quellen Anlage 1 (zu § 3 Nummer 11) Anlage 2 (zu § 7 Absatz 1 Satz 3)
Die Karte „Referenzwerte Naturnaher Wasserhaushalt“ ist eine wasserwirtschaftliche Planungskarte aus der die Anteile der Grundwasserneubildung, der Verdunstung und des Abflusses am Regenwasser für den naturnahen Zustand abgelesen werden können. Die Planungskarte dient der gebietsspezifischen Bestimmung von Ziel- und Orientierungsgrößen bei städteplanerischen und wasserwirtschaftlichen Fragestellungen für die Hamburger Verwaltungs- und Planungsebene. Weitere Erläuterungen siehe unter http://www.hamburg.de/go/976250 (oder Link auf der MetaVer-Seite ganz unten)
Etwa 20 km vor der deutsch-niederländischen Grenze fließt der Niederrhein von Süden in einer scharfen Kurve nach Westen. Am Ende dieses Reeser Rheinbogens liegt bei Rhein-km 837 die kleine namensgebende Stadt Rees unmittelbar am rechten Flussufer. Die Stadtmauern widerstehen hier seit Jahrhunderten den Fluten des Stroms. Wegen des eingeengten Flussquerschnitts haben insbesondere extreme Hochwasser in der Vergangenheit eine tiefe Erosion der Rheinsohle von mehreren Metern verursacht. Ein im Jahr 1998 begonnener Kolkverbau verhindert die weitere Tiefenerosion. Aber um das Problem nachhaltig zu beherrschen, hat die Wasser- und Schifffahrtsverwaltung des Bundes (WSV) bereits in den 1990er-Jahren mit der Planung einer Flutmulde begonnen. Die Planungsarbeiten für die Flutmulde erstreckten sich über nahezu zwei Jahrzehnte und wurden durch umfangreiche Modelluntersuchungen der BAW begleitet. Zu Beginn der 1990er-Jahre galt es zunächst, aus verschiedenen möglichen Varianten den optimalen Korridor für die Trassierung der Flutmulde auszuwählen. Die nun im Bau befindliche Flutmulde durchsticht den Reeser Rheinbogen mit einer Breite von 150 m bis 180 m linksrheinisch auf einer Länge von rund 3 km. Der Rhein erhält dadurch einen gewaltigen Nebenarm, der ab einem Wasserstand von 80 cm über Mittelwasser zur Entlastung des Hauptstroms führt. Der Zustrom zur Flutmulde wird durch eine stromaufwärts gelegene Überlaufschwelle geregelt. Bei extremem Hochwasser steigt der Abfluss durch die Flutmulde auf rund 18 % des Gesamtabflusses im Rhein an. Hierdurch wird die Erosion in diesem Rheinabschnitt vor den Stadtmauern von Rees deutlich gemindert. Außerdem wird bei extremen Hochwasserereignissen der Wasserspiegel um etwa 10 cm abgesenkt. Die Baukosten liegen bei 50 Millionen Euro, an denen sich das Land Nordrhein-Westfalen mit 4 Millionen Euro beteiligt. Neben der hydraulischen Funktion mussten insbesondere ökologische Vorgaben berücksichtigt werden, um die ökologisch hochsensiblen Naturräume nicht zu beeinträchtigen. Denn die Flutmulde liegt nicht nur in einem Landschaftsschutzgebiet des Kreises Kleve und einem Naturschutzgebiet des Kreises Wesel, welches zwei Fauna-Flora-Habitat-Areale beinhaltet, sondern gehört auch zum EU-Vogelschutzgebiet und dem 'Feuchtgebiet von internationaler Bedeutung Unterer Niederrhein' (RAMSAR-Konvention, UNESCO). Um dieser Bedeutung gerecht zu werden, wird die Flutmulde naturnah gestaltet, soweit dies mit der wasserbaulichen Funktion und der Standsicherheit des Bauwerks vereinbar ist. So werden im Umfeld der Nebenrinne Feuchtwiesen geschaffen und die Ufer durch die initiale Anpflanzung von Röhricht in ingenieurbiologischer Bauweise gesichert. Text gekürzt
Der Klimawandel ist ein globales Phänomen. Erhöhte Treibhausgaskonzentrationen in der Atmosphäre führen zu globalen Veränderungen des Klimas. Auf lokaler Ebene können Betroffenheiten entstehen. Es ist eine besondere Herausforderung, ausgehend von globalen Klimaveränderungen auf lokale Folgen, z. B. für die Wasserstraßen, zu schließen. In KLIWAS1 wird mit Hilfe einer Kette von Modellen das Klimaänderungssignal Schritt für Schritt auf kleinere räumliche Skalen übertragen. Am Anfang stehen verschiedene Emissionsszenarien die mögliche Zukünfte beschreiben. Ausgehend von diesen Emissionsszenarien wird der Klimawandel über globale Klimamodelle, regionale Klimamodelle und Abflussmodelle bis hin zu den Wirkmodellen bis zur lokalen Ebene der Wasserstraße transferiert. Kein Modell in dieser Kette repräsentiert die Natur perfekt. Die Ergebnisse jedes Modells basieren auf Annahmen und sind mit Unsicherheiten behaftet. Im Verlauf der Modellkette summieren sich die Unsicherheiten auf. Am Ende der Modellkette ist die Bandbreite der möglichen Folgen eines Klimawandels auf lokaler Ebene sehr groß. Für die deutschen Küstengebiete der Nord- und Ostsee einschließlich der Ästuare ist es aufgrund dieser Unsicherheiten schwierig, konkrete Aussagen zu den lokalen Auswirkungen und möglichen Betroffenheiten zu machen. Eine Möglichkeit mit diesen Unsicherheiten umzugehen sind Sensitivitätsstudien. Die wichtigsten physikalischen Parameter im Ästuar sind Wasserstand, Strömungsgeschwindigkeit, Salzgehalt, Temperatur und Schwebstoffgehalt. Wie sich diese Parameter in einem Ästuar entwickeln, ist abhängig von den Randbedingungen. Die Randbedingungen werden durch die Haupteinflussfaktoren Meeresspiegel in der Nordsee, Abfluss, Wind und Topographie bestimmt, die sich direkt oder indirekt durch die Folgen eines Klimawandels verändern können. Für die Sensitivitätsstudien werden die genannten Haupteinflussfaktoren, die die Randbedingungen dieser Studien bilden, einzeln und in Kombination variiert. Auf diese Weise können Aussagen darüber getroffen werden, wie sich im Ästuar Wasserstand, Strömung, Salzgehalt und Schwebstoffe an die veränderten Randbedingungen (Folgen des Klimawandels) anpassen. Dadurch ist es möglich, festzustellen, unter welchen Bedingungen ein Schwellenwert überschritten wird, der eine Betroffenheit auslöst. Gleichzeitig tragen diese Szenarien zum Prozessverständnis des physikalischen Systems Ästuar bei. Sensitivitätsstudien liefern klare Wenn-Dann-Aussagen. Für eine zeitliche Zuordnung können die Ergebnisse der Sensitivitätsstudien über die jeweils verwendeten Haupteinflussfaktoren mit den aktuellen Klimaszenarien in Beziehung gesetzt werden. (Text gekürzt)
Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
Um die Ufer von Binnenwasserstraßen vor schädlichen Auswirkungen der schiffsinduzierten und natürlichen hydraulischen Belastungen zu schützen, werden diese bisher überwiegend mit Schüttsteindeckwerken, die aus großen Wasserbausteinen bestehen, gesichert. Mit der im Jahr 2000 eingeführten Europäischen Wasserrahmenrichtlinie soll der ökologische Zustand der Wasserstraßen langfristig verbessert werden. Sie sind naturnäher zu gestalten, um Lebensräume für Tiere und Pflanzen zu schaffen und zu erhalten. Eine solche ökologische Aufwertung kann erreicht werden, indem die Schüttsteindeckwerke durch naturnahe technisch-biologische Ufersicherungen ersetzt werden. Die Ufer werden dabei entweder allein durch Pflanzen oder durch Pflanzen und technische Komponenten geschützt. Wo genau diese umweltfreundlichen Ufersicherungen anwendbar sind, wie sie geplant, bemessen und ausgeführt werden können und wie sie ökologisch zu bewerten sind, damit beschäftigt sich seit einigen Jahren ein interdisziplinäres Forschungsprojekt der Bundesanstalt für Wasserbau (BAW) in Zusammenarbeit mit der Bundesanstalt für Gewässerkunde (BfG). Dessen Ziel ist es, Empfehlungen und Grundlagen zu erarbeiten, um die neu entwickelten Ufersicherungsarten an Binnenwasserstraßen einzusetzen. Die enge Zusammenarbeit verschiedener Fachreferate der BAW (Erdbau und Uferschutz; Schifffahrt) und der BfG (Landschaftspflege, Vegetationskunde; Tierökologie) ermöglicht eine fachübergreifende Projektbearbeitung aus technischer und ökologischer Sicht (ufersicherung.baw.de). Einen besonderen Schwerpunkt des Forschungsprojektes bildet seit 2011 ein Naturversuch auf einem ein Kilometer langen Flussabschnitt am rechten Rheinufer bei Worms (km 440,6 bis km 441,6). In Kooperation mit dem Wasserstraßen- und Schifffahrtsamt (WSA) Mannheim werden in neun Versuchsfeldern unterschiedliche technisch-biologische Ufersicherungsmaßnahmen an der größten und meist befahrenen Wasserstraße in Deutschland getestet. Im Untersuchungsgebiet verkehren rund 120 Güterschiffe pro Tag. Je nach Abfluss schwankt der Wasserstand um über 6 m. Die Böschungen sind zudem relativ steil geneigt. In vier Versuchsfeldern wurde die Steinschüttung oberhalb des mittleren Wasserstands durch Weidenspreitlagen, vorkultivierte Röhrichtgabionen und Pflanzmatten sowie Steinmatratzen ersetzt. In weiteren vier Feldern blieb die Steinschüttung erhalten und wurde durch verschiedene Maßnahmen ökologisch aufgewertet. Dabei wurde das Ufer mit Weidensetzstangen und -faschinen, mit Busch- und Heckenlagen begrünt, die Uferstruktur wurde mittels Kies, großen Einzelsteinen und Totholzfaschinen verbessert; zudem wurden durch einen der Böschung vorgelagerten Steinwall geschützte Bereiche geschaffen. Ein Versuchsfeld blieb zum Vergleich ohne Sicherung. (Text gekürzt)
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Origin | Count |
---|---|
Bund | 1264 |
Europa | 7 |
Global | 1 |
Kommune | 1 |
Land | 133 |
Wissenschaft | 5 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 2 |
Ereignis | 1 |
Förderprogramm | 1191 |
Gesetzestext | 1 |
Text | 57 |
Umweltprüfung | 17 |
unbekannt | 92 |
License | Count |
---|---|
geschlossen | 98 |
offen | 1232 |
unbekannt | 31 |
Language | Count |
---|---|
Deutsch | 1216 |
Englisch | 309 |
Resource type | Count |
---|---|
Archiv | 15 |
Bild | 11 |
Datei | 5 |
Dokument | 70 |
Keine | 971 |
Unbekannt | 3 |
Webdienst | 14 |
Webseite | 331 |
Topic | Count |
---|---|
Boden | 1115 |
Lebewesen und Lebensräume | 1140 |
Luft | 946 |
Mensch und Umwelt | 1355 |
Wasser | 1254 |
Weitere | 1361 |