Auswertung vorhandenen Datenmaterials ueber Art und Umfang der Abgas- und Geraeuschemissionen von Kraftfahrzeugen. Bei der Genehmigung von Kraftfahrzeugtypen fallen Daten ueber Art und Umfang bestimmter Abgasemissionen und Geraeuschemissionen von Kraftfahrzeugen an, wobei die Daten ueber die Abgasbestandteile und Geraeuschwerte auf Datentraeger uebernommen werden und fuer eine Auswertung zur Verfuegung stehen. Die Auswertung und Aufbereitung vorhandenen Datenmaterials erfolgt mit Ruecksicht auf die zur Verfuegung stehenden Mittel nur in begrenztem Rahmen.
Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die gewonnenen Erkenntnisse auch auf weitere kontin (Text abgebrochen)
Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (fester Werkstoff sowie Stahlschmelze) umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie (nur Mikrowellenplasmabrenner-Beheizung unterstützt mit elektrischen Heizer zur Bewältigung der Thermoschockbeanspruchungen im Ofenaggregat) bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden.
Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (fester Werkstoff sowie Stahlschmelze) umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie (nur Mikrowellenplasmabrenner-Beheizung unterstützt mit elektrischen Heizer zur Bewältigung der Thermoschockbeanspruchungen im Ofenaggregat) bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Der Mikrowellenplasmabrenner wird vorbehaltlich der Förderung bei PleissnerGuss angeschafft.
Das wichtigste Ziel der Arbeiten ist die umfassende qualitative und quantitative Analyse der (teilweise krebserregenden) polycyclischen Aromaten, die von Haushaltsfeuerungen emittiert werden. Die Untersuchungen erstrecken sich derzeit auf Einzeloefen fuer Gas, Erdoel und Kohle mit Heizleistungen um 6000 kcal/h.
Untersuchung des Zusammenhangs zwischen Leistung, Abgasemission und Wirkungsgrad bei Betrieb von Ottomotoren mit mageren Brennstoff-Luft-Gemischen.
Der Wirkungsgrad von Dieselmotoren ist wegen des thermodynamisch guenstigeren Arbeitsprozesses besser als jener von Ottomotoren. Darueberhinaus erfolgt die Verbrennung des Kraftstoffes wesentlich schadstoffaermer, abgesehen vom nachstoechiometrischen Bereich, in dem das Dieselverfahren zur Russbildung neigt. Ersetzt man die eingespritzte Dieselkraftstoffmenge weitgehend durch der Ansaugluft beigemischtes Brenngas - der Dieselkraftstoff dient dann nur noch zur Zuendung des Gemischs -, so kann die Feststoffemission und damit auch die Emission biologisch aktiver bzw. krebserregender benzolloeslicher Substanzen stark vermindert werden. Einer verfahrensbedingt hoeheren Emission unverbrannter Abgaskomponenten kann durch verschiedene motorische Massnahmen, wie Drosselung der Ansaugluft, Gemischvorwaermung, partielle Rueckfuehrung gekuehlter bzw. besser ungekuehlter Abgase begegnet werden. Die Gaszugabe ermoeglicht eine verstaerkte Abgasrueckfuehrung und so eine weitergehende Verminderung der Stickoxidemission. Im obersten Lastbereich kann die Verschiebung der Russgrenze zur Leistungs- und Wirkungsgradsteigerung genutzt werden. Das Gesamtkonzept dieses Verfahrens bezieht in seiner letzten Phase die Installation eines Vergasungsreaktors direkt am Motor ein mit dem Ziel, fuer mobile Zwecke aus fluessigen Kraftstoffen direkt das notwendige Brenngas herzustellen.
Ziel der Forschung ist es, naehere Erkenntnisse ueber die reaktionskinetischen Ablaeufe im Brennraum eines Modelldieselmotors zu erlangen. Dazu wird durch am Einheitstriebwerk, das im Verbrennungsablauf mit der Dieselverbrennung zu vergleichen ist, die Reaktion zu einem vorwaehlbaren Zeitpunkt abgestoppt und das zum 'Einfrier'-Zeitpunkt vorliegende Brenngas mit GC-Analyse untersucht. Die einflussnehmenden Parameter wie Brenndauer, Zylinderwandtemperatur, Einspritzzeitpunkt, Einspritzmenge, Verdichtungsverhaeltnis, Gemischaufbereitung, Zuendzeitpunkt etc. koennen in weiten Bereichen variiert werden.
Zur Verbesserung der Gesetzgebung auf dem Gebiet der Kfz-Abgasemissionen sind die Pruefmethoden zu verbessern, zu modernisieren und zu vereinfachen. Mit Hilfe eines neuen Rollpruefstandes, der eine sehr aufwendige Abgasanalytik mit rund 10 kontinuierlich messenden Analysengeraeten fuer die verschiedenen gasfoermigen Abgaskomponenten und eine Kondensationseinrichtung fuer fluessige und feste Abgasbestandteile enthaelt, werden mit verschiedenen Versuchswagen (mit Otto- und Dieselmotoren) Versuchsreihen gefahren, die auch eine Beurteilung des Abgasverhaltens der Fahrzeuge, z.T. ueber lange Laufstrecken gestatten.
Um die klimafreundliche Nutzung von biogenen Rest- und Abfallstoffen langfristig sicher zu stellen und den Anforderungen aus der Luftreinhaltung gerecht zu werden, müssen neue Techniken erprobt werden, welche eine deutliche Minderung der in den Rauchgasen enthaltenen Schadstoffe erzielen. In dem Verbundvorhaben DeNOx-DePM soll eine kombinierte Emissionsminderung der Abgaskomponenten NOx und Feinstaub für Biomassefeuerungen, welche unter die 44. BImSchV fallen, erreicht werden. Dabei soll ein innovatives Rauchgasreinigungssystem, bestehend aus einem angepassten Gewebefilter mit Filterkerzen aus Edelstahlgewebe und der Zugabe von katalytisch wirksamen Additiven, entwickelt werden. Das Verfahren soll zunächst im Labor entwickelt, danach im Technikumsmaßstab erprobt und abschließen praxisnah an einem Holzheizkraftwerk untersucht werden. Durch die Zugabe eines Additivs (Precoat) in das Rauchgas vor dem Staubabscheider kann eine verbesserte Partikelabscheidung auf dem Gewebefilter durch den zusätzlich erzeugten Filterkuchen erreicht und die Abscheideeffizienz für Feinstäube gesteigert werden. Zusätzlich soll das Additiv durch ein mikrowellengestütztes Beschichtungsverfahren mit bereits bei niedrigeren Betriebstemperaturen katalytisch wirksamen Komponenten aktiviert werden. Dadurch soll neben der verbesserten Staubabscheidung auch eine katalytische Stickstoffoxidreduktion unter zusätzlicher Zugabe des Reduktionsmittels Ammoniak realisiert werden. Untersucht werden soll neben der reinen Entstickung mit katalytischen Additiven am Filter auch eine Kombination aus Entstickung im Feuerraum (SNCR) und Nutzung des Ammoniak-Schlupfs am Filter für deutlich niedrigere Emissionen. Darüber hinaus wird das System auch ökonomisch und ökologisch im Hinblick auf seine Wettbewerbsfähigkeit und potentiellen Emissionsminderung untersucht und eingeordnet.
| Origin | Count |
|---|---|
| Bund | 315 |
| Type | Count |
|---|---|
| Förderprogramm | 315 |
| License | Count |
|---|---|
| offen | 315 |
| Language | Count |
|---|---|
| Deutsch | 306 |
| Englisch | 32 |
| Resource type | Count |
|---|---|
| Keine | 245 |
| Webseite | 70 |
| Topic | Count |
|---|---|
| Boden | 289 |
| Lebewesen und Lebensräume | 293 |
| Luft | 288 |
| Mensch und Umwelt | 314 |
| Wasser | 287 |
| Weitere | 315 |