This raster dataset shows forest canopy cover loss (FCCL) in Germany at a monthly resolution from September 2017 to September 2024. It is similar to the product developed by Thonfeld et l. (2022) but was fully reprocessed and updated to reveal the most recent forest disturbance dynamics. The combination of Sentinel-2A/B and Landsat-8/9 data allows for a high temporal resolution while the pixel size of the product is 10 m. The results are clipped to the stocked area 2018 mapped by the Johann-Heinrich-von-Thünen Institute (Langner et al. 2022, https://doi.org/10.3220/DATA20221205151218). The dataset contains predominantly larger canopy openings resulting from different drivers but also larger clusters of standing deadwood. FCCL can result from abiotic (e.g. wind, fire, drought, hail) drivers, biotic (e.g. insects, funghi) drivers or a combination of both as well as from sanitary and salvage logging and planned harvest. The first version with canopy cover losses from January 2018 - April 2021 (Thonfeld et al. 2022) can be accessed here: https://geoservice.dlr.de/web/datasets/tccl.
Auf drei Wegen ist es möglich, die von den Quellen her begrenzten Untersuchungsmethoden zu einer Umweltgeschichte des Waldes zu erweitern. Erstens muss die Zusammenarbeit mit den Naturwissenschaften gesucht werden, wofür das Graduiertenkolleg die besten Voraussetzungen bietet. Damit soll aber nicht die Illusion geweckt werden, als könne man im gleichen Waldgebiet naturwissenschaftliche und historische Ergebnisse kombinieren; denn nicht jeder Forst, nicht jeder Wald eignet sich von der Quellenüberlieferung her gleichermaßen für eine umweltgeschichtliche Untersuchung. Das hängt mit dem zweiten Weg zusammen, der die Quellenbegrenzung überwinden kann: die von der Agrargeschichte entwickelte rückschreitende Methode, mit der die reicheren früh-neuzeitlichen Quellen für die mittelalterliche Waldgeschichte herangezogen werden können. Die Risiken der rückschreitenden Methode sind zwar in der Zwischenzeit hinreichend bekannt, aber in der Bestandsgeschichte der Wälder zeigt sich doch eine größere Stabilität und Kontinuität als in der agrarischen Kulturlandschaft. Zudem sind die aufschlussreichen Flurnamen in den Wäldern nahezu ausschließlich in den frühneuzeitlichen Quellen enthalten, obwohl sie sprachgeschichtlich gesehen eindeutig mittelalterlichen Ursprungs sind. Die Waldkarten schließlich, sofern sie überhaupt angelegt worden sind, stammen allesamt aus der frühen Neuzeit. Drittens besteht die Möglichkeit, die Bestandsgeschichte von Wäldern über spezifische Siedlungs- bzw. Produktionsformen zu erschließen. Dieses methodisch schwierige Verfahren sei an zwei Beispielen illustriert. Töpfersiedlungen sind nicht nur in ihrer Standortwahl vom Lehm, sondern stärker noch wegen ihres Brennholzbedarfes von den Buchenwäldern abhängig. Sodann gibt es im Mittelalter durchaus den Typus der Stadt ohne Wald, die Ausnahme von dem Regelfall, dass zur urbanen Siedlung auch der Stadtwald gehört. Am Beispiel Bremens lässt sich über die Rechnungen etwa des städtischen Bauhofs zeigen, welche Hölzer aus welchen Gebieten herangeflößt wurden. Bekannt ist das Beispiel der Eichen aus dem Kaufunger Wald, die für die berühmte Bremer Hansekogge die Weser hinab geflößt wurden. Die Flößereigeschichte ist gerade für den erwähnten dritten Weg von großer Bedeutung. Da die einschlägigen Nachrichten aber erst aus dem 15. Jahrhundert stammen, zeigt sich auch hier, dass die Beschreitung des erwähnten zweiten Weges, die Einbeziehung der frühneuzeitlichen Quellen unerlässlich ist.
Der Melvillesee ist ein Fjordsee, der sich in der letzten Eiszeit am Rande des hochdynamischen Laurentidischen Eisschildes (LIS) befand. Die obersten 10 m der insgesamt ca. 300-400 m Seesedimente haben die postglaziale Geschichte der letzten 10000 Jahre aufgezeichnet. In diesem dicken Sedimentpaket dürfte der See die Klimageschichte bis weit zurück vor das letzte Glazial gespeichert haben und würde sich daher als exzellentes Klimaarchiv anbieten. Um diesen Sachverhalt zu klären, wurde im Sommer 2019 eine Expedition mit dem FS Maria S. Merian (MSM84) unternommen. Während dieser Expedition wurden Sedimentkerne gezogen sowie ein dichtes Netz von hydroakustischen Messungen durchgeführt. Anhang der Sedimentkerne und der Sedimentecholot-Daten kann man fünf verschiedene Schichten im Untergrund des Sees erkennen: (I) post-glaziale Sedimente; (II) Sedimente aus der Zeit des Eisrückzuges; (III) Sedimente, die mit großer Wahrscheinlichkeit in einem subglazialen See unterhalb des aufschwimmenden LIS abgelagert wurden. Darunter finden sich (IV) wiederum schön geschichtete Sedimente, die aus einem früheren eisfreien Zeitraum stammen dürften, vermutlich MIS5, MIS4 oder die erste Hälfte des MIS3. Als unterste Schichte ist das Grundgestein (V) zu erkennen. Unsere Sedimentkerne enthalten Sedimente aus I und II sowie aus dem obersten Bereich von III. Im Rahmen dieses Projektes schlagen wir vor, die post-glazialen Sedimente sowie diejenige vom Rückzug des LIS genauer zu untersuchen, um daran Paläoklimaschwankungen sowie die Rückzugsgeschichte des LIS zu rekonstruieren. In einem zweiten Schritt möchten wir auch die Sedimente analysieren, die vom subglazialen See zu stammen, um diesen besser zu charakterisieren und um zu testen, ob auch diese Sedimente Klimaschwankungen aufgezeichnet haben. Um diese Fragen zu beantworten, werden wir die Sedimentkerne zuerst mit zerstörungsfreien Methoden wie CT-Scanning, Multisensor-Core-Logging und XRF-Scanning untersuchen. Danach werden ausgewählte Kernabschnitte beprobt. Mit Hilfe von Radiokarbondatierungen und paläomagnetischen Messungen werden wir ein Altersmodell erstellen können. Mit einer Kombination der zerstörungsfreien Messungen mit Einzelprobenmessungen (TIC, TOC, Korngröße, XRD, WD-XRF) werden wir die in den Kernen enthaltene paläoklimatologische Information entschlüsseln. Hierbei werden wir einen Schwerpunkt auf die Entwicklung von Proxies legen, die geeignet sind, die vergangenen Vorstöße und Rückzüge des LIS zu rekonstruieren. Falls wir zeigen können, dass die Sedimente des Melvillesees tatsächlich ein Archiv für Klimageschichte auch jenseits des Holozäns sind, dann empfiehlt sich der See als ein Hauptziel einer zukünftigen amphibischen Tiefbohrung von IODP und ICDP. Diese würde mit dem Ziel abgeteuft, die Dynamik des LIS zu rekonstruieren.
Die neu gegründete Butterweck Holzstoffe GmbH & Co. KG ist über die Gesellschafterstruktur mit der Butterweck Rundholzlogistik GmbH & Co. KG verbunden. Das mittlerweile in zweiter Generation geführte Familienunternehmen in Lehe/Ems ist als Dienstleister in der Forstwirtschaft tätig und bietet Beratung bei der Waldbepflanzung sowie der Waldbetreuung, -pflege und -vermessung an, unterstützt bei der bestandschonenden Holzernte und der Transportlogistik und vertreibt darüber hinaus Brenn- und Rundholz sowie Hackschnitzel und Rindenmulch. Die Butterweck Holzstoffe GmbH & Co. KG plant die erstmalige großtechnische Realisierung einer Anlage zur Herstellung von Holzschaumplatten ohne Verwendung von synthetischen Bindemitteln. Die vom Wilhelm-Klauditz-Institut in Braunschweig entwickelten holzbasierten Schäume sind ein neuer Werkstoff und werden in Deutschland noch nicht großtechnisch hergestellt. Sie sollen Verwendung als Dämmplatten, Möbel- und Sandwichelemente oder als Torfsodenersatz finden. Die Holzschaumplatten sollen konventionelle Holzfaserplatten, erdölbasierte Schäume sowie Verbunddämmmaterialien ersetzen, deren Herstellung mit schädlichen Umweltauswirkungen verbunden sind. So werden Holzfaserplatten in Deutschland üblicherweise mit synthetischen Bindemitteln, wie pMDI oder Harnstoff-Formaldehyd-Harzen, hergestellt. Die Bindemittel führen während und vor allem nach der Herstellung z.B. zu Formaldehydemissionen. Die Herstellung der Holzschaumplatten kommt hingegen ohne die Verwendung synthetischer Bindemittel aus. Insbesondere soll bei der Herstellung dieses neuartigen Werkstoffes die Ressourceneffizienz gegenüber der Herstellung konventioneller Produkte gesteigert und der Chemikalieneinsatz reduziert werden. Zur Herstellung des Holzschaums werden Holzhackschnitzel in verschiedenen Verfahrensschritten zellular aufgeschlossen. Die dadurch entstandene wässrige Suspension wird unter Zugabe eines Treibmittels im Intensivmischer aufgeschäumt. Ferner werden Proteine eingesetzt, die den Schäumungsprozess unterstützen und dabei denaturieren. Abhängig vom geplanten Anwendungsbereich der Platten werden ggf. auch Graphite als Flammschutzmittel und/oder Wachse als Hydrophobierungsmittel zugegeben. Auf synthetische Bindemittel kann vollständig verzichtet werden. Der Holzschaum wird anschließend auf ein spezielles Förderband in Plattenform aufgebracht und mittels einer innovativen elektromagnetischen Trocknungsanlage auf die erforderliche Endfeuchte getrocknet. Diese Trocknung zeichnet sich durch einen sehr schnellen Wärmeeintrag und einen hohen Wirkungsgrad aus. Je nach Mahlgrad, eingesetzter Faser- und Additivmenge können unterschiedliche Plattenrohdichten für unterschiedlichste Anwendungen erzeugt werden. Die so hergestellten Holzschaumplatten können wie konventionelle Holzwerkstoffplatten nachbearbeitet werden, z.B. durch Sägen, Schleifen und Beschichten. Fehlerhafte Platten können in den Produktionsprozess zurückgeführt oder zu Torfsodenersatz weiterverarbeitet werden. Die Umweltentlastungen des Vorhabens beruhen auf der umweltschonenderen Herstellung der Holzschaumplatten im Vergleich zur Herstellung von konventionellen Werkstoffen. Die Herstellung der Holzschaumplatten besitzt eine höhere Materialeffizienz als die Herstellung vergleichbarer Holzfaserplatten. Die konkrete Holzeinsparung ist abhängig vom Referenzprodukt. Ausgehend vom geplanten Produktportfolio nach Inbetriebnahme werden Holzeinsparungen in Höhe von 14.813 Tonnen pro Jahr erwartet, was rund 68 Prozent pro Jahr entspricht. Als Rohstoff für die Holzschaumplatten kommt sämtliche hölzerne Biomasse in Betracht (z.B. Nadel- & Laubholz, Altholz, Sägerestholz, Flachs oder Maisspindeln), wodurch die Kaskadennutzung unterstützt wird. Auch die Laubholznutzung wird dadurch gefördert. Für Holzfaserdämmplatten wird zurzeit ausschließlich Nadelrundholz eingesetzt. (Text gekürzt)
Zielsetzung: Das gleichzeitige Streben nach mehr Holzernte gemäß den bioökonomischen Zielen und der Erhöhung des Waldschutzes gemäß der EU-Biodiversitätsstrategie ist in Regionen und Ländern mit derzeit intensiver Holzproduktion möglicherweise nicht gleichermaßen erreichbar. Die daraus resultierende Inkohärenz der Politik aufgrund von Zielkonflikten und inkongruenter Umsetzung wird wahrscheinlich verwirrend sein und möglicherweise die Multifunktionalität der Wälder beeinträchtigen. Die Förderung der Erhaltung der Waldökosysteme im Hinblick auf die zahlreichen Erwartungen der Gesellschaft ist ein entscheidendes Ziel der Forstwirtschaft und der Forschung. Frühere Forschung hat sich mit der Frage sich widersprechender Wald- und Umweltpolitik hauptsächlich aus der Sicht der Governance befasst, wobei der Schwerpunkt nicht auf den Auswirkungen der Inkohärenz oder auf den Auswirkungen und der Wirksamkeit von Policy-Mixen lag. Um neue Politiken und Forstwirtschaftspraktiken zu entwickeln, die die potenziellen Kompromisse zwischen verschiedenen sozialen, wirtschaftlichen und ökologischen Beiträgen identifizieren und in Einklang bringen können, ist eine systematische Analyse der Politik, ihrer Umsetzung und ihrer langfristigen Auswirkungen erforderlich. Unser Projekt plant, eine solche Analyse durchzuführen, um eine solide Grundlage für die Lösung der sozial-ökologischen Landnutzungskonflikte zu schaffen, die durch politische Inkohärenz verursacht werden. Dieses Projekt beabsichtigt, neue Erkenntnisse für die Forstpolitik, die Forstwirtschaft und die Raumplanung zu gewinnen, indem es die Auswirkungen von Politiken und Managementpraktiken quantitativ analysiert und groß angelegte Waldprogramme entwickelt, die gleichzeitig die Holzproduktion erhalten oder steigern und die Nachhaltigkeit und Widerstandsfähigkeit der Multifunktionalität in Wäldern gewährleisten können. Wir verwenden ein globales Modell, um nationale und regionale Schätzungen des Holzbedarfs in verschiedenen sozioökonomischen Entwicklungspfaden und Szenarien zur Klimaverminderung abzuleiten, und kombinieren Simulations- und Optimierungswerkzeuge mit einer umfassenden Reihe von Biodiversitätsindikatoren sowie monetären und nicht-monetären Wertindikatoren für Ökosystemdienstleistungen. Wir analysieren europäische und nationale Politiken, die auf mehrere Waldfunktionen ausgerichtet sind, entwickeln geeignete Multifunktionalitätsmetriken und kombinieren beteiligte Interessengruppen, um praktikable Politik- und Managementmaßnahmen zu identifizieren. Mit diesen Instrumenten bewerten wir empirisch und qualitativ die Nachhaltigkeitslücke, die sich aus der Inkohärenz der Politik ergibt. Aufgrund der Unterschiede zwischen den EU-Ländern und -Regionen in Bezug auf deren sozioökonomischen Rolle der Wälder oder in ihrer Verwaltung ist es sehr wahrscheinlich, dass die aus der Inkohärenz der Politik resultierende Nachhaltigkeitslücke geografisch sehr unterschiedlich ist. (Text gekürzt)
Die neu gegründete Butterweck Holzstoffe GmbH & Co. KG ist über die Gesellschafterstruktur mit der Butterweck Rundholzlogistik GmbH & Co. KG verbunden. Das mittlerweile in zweiter Generation geführte Familienunternehmen in Lehe/Ems ist als Dienstleister in der Forstwirtschaft tätig und bietet Beratung bei der Waldbepflanzung sowie der Waldbetreuung, -pflege und -vermessung an, unterstützt bei der bestandschonenden Holzernte und der Transportlogistik und vertreibt darüber hinaus Brenn- und Rundholz sowie Hackschnitzel und Rindenmulch. Die Butterweck Holzstoffe GmbH & Co. KG plant die erstmalige großtechnische Realisierung einer Anlage zur Herstellung von Holzschaumplatten ohne Verwendung von synthetischen Bindemitteln. Die vom Wilhelm-Klauditz-Institut in Braunschweig entwickelten holzbasierten Schäume sind ein neuer Werkstoff und werden in Deutschland noch nicht großtechnisch hergestellt. Sie sollen Verwendung als Dämmplatten, Möbel- und Sandwichelemente oder als Torfsodenersatz finden. Die Holzschaumplatten sollen konventionelle Holzfaserplatten, erdölbasierte Schäume sowie Verbunddämmmaterialien ersetzen, deren Herstellung mit schädlichen Umweltauswirkungen verbunden sind. So werden Holzfaserplatten in Deutschland üblicherweise mit synthetischen Bindemitteln, wie pMDI oder Harnstoff-Formaldehyd-Harzen, hergestellt. Die Bindemittel führen während und vor allem nach der Herstellung z.B. zu Formaldehydemissionen. Die Herstellung der Holzschaumplatten kommt hingegen ohne die Verwendung synthetischer Bindemittel aus. Insbesondere soll bei der Herstellung dieses neuartigen Werkstoffes die Ressourceneffizienz gegenüber der Herstellung konventioneller Produkte gesteigert und der Chemikalieneinsatz reduziert werden. Zur Herstellung des Holzschaums werden Holzhackschnitzel in verschiedenen Verfahrensschritten zellular aufgeschlossen. Die dadurch entstandene wässrige Suspension wird unter Zugabe eines Treibmittels im Intensivmischer aufgeschäumt. Ferner werden Proteine eingesetzt, die den Schäumungsprozess unterstützen und dabei denaturieren. Abhängig vom geplanten Anwendungsbereich der Platten werden ggf. auch Graphite als Flammschutzmittel und/oder Wachse als Hydrophobierungsmittel zugegeben. Auf synthetische Bindemittel kann vollständig verzichtet werden. Der Holzschaum wird anschließend auf ein spezielles Förderband in Plattenform aufgebracht und mittels einer innovativen elektromagnetischen Trocknungsanlage auf die erforderliche Endfeuchte getrocknet. Diese Trocknung zeichnet sich durch einen sehr schnellen Wärmeeintrag und einen hohen Wirkungsgrad aus. Je nach Mahlgrad, eingesetzter Faser- und Additivmenge können unterschiedliche Plattenrohdichten für unterschiedlichste Anwendungen erzeugt werden. Die so hergestellten Holzschaumplatten können wie konventionelle Holzwerkstoffplatten nachbearbeitet werden, z.B. durch Sägen, Schleifen und Beschichten. Fehlerhafte Platten können in den Produktionsprozess zurückgeführt oder zu Torfsodenersatz weiterverarbeitet werden. Die Umweltentlastungen des Vorhabens beruhen auf der umweltschonenderen Herstellung der Holzschaumplatten im Vergleich zur Herstellung von konventionellen Werkstoffen. Die Herstellung der Holzschaumplatten besitzt eine höhere Materialeffizienz als die Herstellung vergleichbarer Holzfaserplatten. Die konkrete Holzeinsparung ist abhängig vom Referenzprodukt. Ausgehend vom geplanten Produktportfolio nach Inbetriebnahme werden Holzeinsparungen in Höhe von 14.813 Tonnen pro Jahr erwartet, was rund 68 Prozent pro Jahr entspricht. Als Rohstoff für die Holzschaumplatten kommt sämtliche hölzerne Biomasse in Betracht (z.B. Nadel- & Laubholz, Altholz, Sägerestholz, Flachs oder Maisspindeln), wodurch die Kaskadennutzung unterstützt wird. Auch die Laubholznutzung wird dadurch gefördert. Für Holzfaserdämmplatten wird zurzeit ausschließlich Nadelrundholz eingesetzt. Bei der Holzschaumherstellung wird die Trocknungsluft im Kreislauf gefahren (Umluft), so dass bei diesem Prozessschritt keine Abluft entsteht und Emissionen vollständig vermieden werden. Gemäß den Ergebnissen der Vorversuche ist die elektromagnetische Trocknung darüber hinaus sechsmal energieeffizienter als eine konventionelle Trocknung. Das Prozesswasser wird ebenfalls im Kreislauf gefahren und innerbetrieblich gereinigt. Nach dem Anfahren der Produktionsprozesse wird unter normalen Betriebsbedingungen kein Frischwasser benötigt, da durch das Frischholz ausreichend Wasser in den Prozess nachfolgt. Das Vorhaben kann insbesondere auf Anlagen der Holzwerkstoffindustrie, aber auch auf die Sägeindustrie oder Holzpelletindustrie übertragen werden, bei denen die vor- und nachgelagerten Prozesse der Holzverarbeitung bereits vorhanden sind und die Prozesse der Holzschaumherstellung ergänzt werden können. In Anbetracht knapper werdender Holzressourcen besitzt das Vorhaben außerdem Modellcharakter für eine ressourceneffiziente und abfallfreie Nutzung von Biomasse. Die elektromagnetische Trocknung als Einzeltechnik kann auch auf Anlagen anderer Branchen übertragen werden, insbesondere wenn instabile Produkte mit hohem Wasseranteil getrocknet werden müssen. Branche: Holzverarbeitung Umweltbereich: Ressourcen Fördernehmer: Butterweck Holzstoffe GmbH & Co. KG Bundesland: Niedersachsen Laufzeit: seit 2023 Status: Laufend
Die Gesundheit wird vor allem durch die hohen Emissionen an Feinstaub und gasförmigen Kohlenwasserstoffen der Holzfeuerungen beeinträchtigt. Beim Verbrennen von Holz entstehen klima- und gesundheitsschädliche Stoffe. So heizen Sie möglichst emissionsarm. Die Verbrennung von Holz, insbesondere von Scheitholz in kleinen Holzfeuerungsanlagen wie Kamin- oder Kachelöfen ohne automatische Regelung, läuft nie vollständig ab und es entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan, Lachgas und Ruß. Um möglichst emissionsarm und effizient zu heizen, sollte gut aufbereitetes und getrocknetes Holz aus nachhaltiger regionaler Forstwirtschaft in einer modernen Feuerstätte mit automatischer Regelung der Luftzufuhr, Katalysator und möglichst hohem Wirkungsgrad verbrannt werden. Gerade beim Verbrennen minderwertigen Holzes in alten, schlecht gewarteten Öfen und bei ungünstigen Verbrennungsbedingungen entstehen unnötig hohe Emissionen. Besonders in Ballungsräumen und in Tälern verschlechtern Holzheizungen aufgrund ihrer niedrigen Schornsteine die Luftqualität. Wie sorge ich dafür, dass mein Holzofen möglichst wenige Schadstoffe ausstößt? Bereits beim Kauf sollten Sie darauf achten, dass die Feuerstätte effizient und emissionsarm ist. Hinweise kann unser Ratgeber „Heizen mit Holz: Wenn, dann richtig!“ geben. Ältere Feuerstätten, die vor 2010 errichtet wurden, haben häufig höhere Emissionen und einen geringeren Wirkungsgrad und sollten daher ausgetauscht werden. Die verwendeten Brennstoffe müssen für das Gerät geeignet sein. Das heißt zum Beispiel, dass Kohleöfen nicht mit Holz oder Scheitholzöfen nicht mit zu großem, zu feuchtem oder zu viel Holz beheizt werden sollten. Die Bedienungsanleitung gibt Auskunft, welche Brennstoffe geeignet sind. Außerdem gibt sie Hinweise über die richtige Bedienung, um Anwendungsfehler, wie beispielsweise Überfüllen der Feuerungsanlage, zu spätes Nachlegen oder falsches Anzünden des Brennstoffes zu vermeiden. Die richtige Lagerung des Brennstoffes ist wichtig, damit das Holz unter optimaler Wärmeabgabe möglichst emissionsarm verbrennt. Frisch geschlagenes Holz enthält – je nach Jahreszeit und Holzart – zwischen 45 und 60 Prozent Wasser. Bei optimaler Trocknung sinkt dieser Wasseranteil auf 15 bis 20 Prozent. Damit das Brennholz richtig durchtrocknen kann, sollten es an einem sonnigen und luftigen Platz vor Regen und Schnee geschützt gestapelt werden und – je nach Holzart – ein bis zwei Jahre lang trocknen. Nicht zuletzt sollte der Ofen regelmäßig durch Fachleute gewartet und überwacht werden. So kann die Luftbelastung soweit wie möglich reduziert werden. Weitere Tipps für die Wahl des geeigneten Ofens und Brennmaterials, Anleitungen, wie Sie richtig heizen und Informationen zu den rechtlichen Rahmenbedingungen finden Sie in der UBA-Broschüre „Heizen mit Holz“ . Tipps zur Wärmewende in Gebäuden finden Sie in den Umwelttipps „Heizen & Bauen“ . Klimabilanz von Holzheizungen Beim Verbrennen von Holz entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan und Lachgas. Bei der Klimabilanz von Brennholz müssen zudem Emissionen berücksichtigt werden, die bei Holzernte, Transport und Bearbeitung entstehen. Darüber hinaus ist der Wald auch Kohlenstoffspeicher. So werden in deutschen Wäldern 1,26 Milliarden Tonnen Kohlenstoff in oberirdischer oder unterirdischer Biomasse gespeichert, die zuvor der Atmosphäre durch Photosynthese entzogen worden sind. Kommt es zu einer Verringerung des Wald- oder Baumbestandes, so kommt es auch zu einer damit einhergehenden Abnahme des Kohlenstoffspeichers sowie der Speicherleistung (neue Einbindung pro Jahr). Um den Kohlenstoff so lange wie möglich gebunden zu halten, soll Holz gemäß des Kaskadenprinzips vorrangig stofflich genutzt und erst am Ende seines Lebenszyklus der energetischen Nutzung zugeführt werden. Im Gegensatz dazu tragen u.a. Einzelraumfeuerungen, welche Scheitholz als Brennstoff verwenden, zu einer schnellen Freisetzung von Treibhausgasen an die Atmosphäre bei. Die vierte Bundeswaldinventur kam zu dem Ergebnis, dass in Deutschland zwischen 2017 und 2022 der Wald zu einer Kohlenstoffquelle wurde, d.h. es wurde mehr Kohlenstoff freigesetzt als gebunden. Um den Klimawandel und die dadurch bedingten Folgen durch Extremwetterereignisse möglichst gering zu halten, muss der Wald wieder zur Kohlenstoffsenke werden und die Senken-Leistung möglichst maximiert werden. Dazu muss weniger Kohlenstoff entnommen werden als gebunden wird. Das bedeutet, dass das klimafreundliche Rohstoff-Potenzial von Holz begrenzt ist. Darüber hinaus gibt es eine steigende Konkurrenz zwischen stofflicher und energetischer Nutzung von Holz. Bei der stofflichen Nutzung von Holz in Holzprodukten kann der Kohlenstoff lange Zeit gespeichert bleiben. Bei der energetischen Nutzung wird er stattdessen sofort in die Atmosphäre freigesetzt. Daher sollte eine energetische Nutzung am Ende einer stofflichen Nutzungskaskade erfolgen, in der der Kohlenstoff erst möglichst spät wieder in die Atmosphäre freigesetzt wird. Wer seine Heizung möglichst klimaschonend planen möchte, sollte verbrennungsfreie Technologien auswählen. Mehr zu diesem Thema finden Sie in den UBA-Umwelttipps zum Heizungstausch . Welche Luftschadstoffe können noch bei der Holzverbrennung entstehen? Bei der Verbrennung von Holz entstehen neben Treibhausgasen auch gesundheitsgefährdende Luftschadstoffe wie Feinstaub, organische Kohlenwasserstoffe wie Polyzyklisch Aromatische Kohlenwasserstoffe (PAKs), Stickoxide, Kohlenstoffmonoxid und Ruß. Feinstaub ist so klein, dass er mit dem bloßen Auge nicht sichtbar ist. Er kann beim Einatmen bis tief in die Lunge eindringen und dort Entzündungen und Stress in Zellen auslösen. Bronchitis, die Zunahme asthmatischer Anfälle oder Belastungen für das Herz-Kreislauf-System können die Folge sein. Feinstaub ist krebserregend und steht außerdem im Verdacht, Diabetes mellitus Typ 2 zu fördern. Feinstaub stellt insbesondere für Schwangere und Personen mit vorgeschädigten Atemwegen eine gesundheitliche Belastung dar. Ein neuer Kaminofen üblicher Größe (ca. 6 bis 8 kW) emittiert, wenn er bei Nennlast betrieben wird, in einer Stunde etwa 500 mg Staub. Das entspricht ca. 100 km Autofahren mit einem PKW der Abgasnorm Euro 6. Einige Kohlenwasserstoffverbindungen , wie z.B. PAKs, die bei einer Verbrennung als unverbrannte Nebenprodukte entstehen, sind geruchstragende Schadstoffe, die durch unsere Nase wahrgenommen werden können. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe.
Wasser ist ein existentieller Grundstoff des Lebens für Mensch, Tier und Pflanze. Von den weltweiten Wasserreserven sind nur knapp 3 % Süßwasser. Ein Großteil des Süßwassers ist in Eis, Schnee und Permafrostböden gebunden. Nur ein geringer Teil des verbleibenden Süßwassers ist tatsächlich nutzbar, ein Großteil ist nicht zugänglich. Zudem sind die Süßwasservorräte global ungleich verteilt. Der Wasserkreislauf wird vor allem durch klimatische Faktoren wie Temperatur, Wind und Sonneneinstrahlung gesteuert. Weitere natürliche Faktoren wie die Pflanzenarten und -dichte beeinflussen die Verdunstung ; Bodenart und Struktur des Geländes, z.B. Hangneigung, wirken auf die Versickerungsfähigkeit und das Abflussgeschehen. Zusätzlich beeinflussen menschliche Eingriffe den natürlichen Wasserkreislauf: In Folge von Veränderungen des Gewässerbettes durch Flussbegradigungen, Uferbefestigungen und ufernahe Deiche verlieren Flüsse ihr natürliches Rückhaltevermögen, die Erosion an den Uferrändern nimmt zu. Auen, Altarme und Überschwemmungsbereiche mit entsprechenden Ökosystemen sind vom Fluss getrennt und können nicht mehr durchströmt werden. Die Gefahr von Hochwasser steigt, da Retentionsmöglichkeiten eingeschränkt sind. Bei Niedrigwasser sind aquatische Ökosysteme betroffen, denn es fehlen Rückzugsräume und beschattete Gewässerbereiche. Durch Bebauung und zunehmende Versiegelung kann der Niederschlag nicht oder nur wenig in den Boden versickern und die Grundwasserneubildung nimmt ab. Auch die Abholzung von Waldflächen sowie (intensive) landwirtschaftliche Bewirtschaftung reduzieren die Versickerungsfähigkeit und den Rückhalt von Niederschlag in der Fläche. Es kommt zu einer Zunahme des Oberflächenabflusses infolge von Verdichtung der Böden und der Erosionsanfälligkeit der Bodendecke. Zudem wirkt der Klimawandel auf den Wasserhaushalt - Niederschlagsmuster verändern sich und die Gefahr für das Auftreten von Starkregenereignissen und Dürren nimmt zu. Deutschland hat im langjährigen Mittel ein Wasserdargebot von 176 Milliarden Kubikmeter (Mrd. m³). Davon entnahmen im Jahr 2022 öffentliche Wasserversorger, , Industrieunternehmen, Bergbau und Energieversorger sowie die Landwirtschaft insgesamt 17,9 Mrd. m³. Energieversorger beziehen ihr Kühl- und Prozesswasser fast vollständig aus Flüssen, Seen und Talsperren. Auch Industrieunternehmen und das verarbeitende Gewerbe entnehmen das notwendige Wasser überwiegend aus Flüssen, Seen und Talsperren. Die Trinkwasserversorger decken ihren Bedarf zu gut 70 % aus Grund- und Quellwasser. Die Landwirtschaft nutzt vornehmlich Grundwasser (69,1 %). Neben diesen direkten Wasserentnahmen nutzen wir auch indirekt Wasser durch den Konsum von Lebensmitteln sowie die Nutzung von Dienstleistungen und Produkten (z.B. Kleidung, elektronische Geräte), die im Ausland hergestellt und nach Deutschland eingeführt werden. Aus der Summe der direkten und indirekten Wassernutzung ergibt sich der sogenannte Wasserfußabdruck für Deutschland. Nach Berechnungen von Bunsen et al. (2022) beträgt er insgesamt rund 219 Mrd. m³ pro Jahr. Damit erzeugt jede Person in Deutschland durchschnittlich einen Wasserfußabdruck von 7.200 Liter täglich.
Dem Deutschen Wetterdienstes (DWD) zufolge war das Jahr 2020 mit einer Jahresmitteltemperatur von 10,4 °C, die nur knapp unter der des bislang wärmsten Jahres 2018 (10,5 °C) lag, das bisher zweitwärmste Jahr in Deutschland seit dem Beginn der regelmäßigen Aufzeichnungen im Jahr 1881. Mit Ausnahme des Monats Mai lagen die Temperaturen aller Monate deutlich über dem Durchschnitt. Die ersten Sommertage (Tage mit einer Maximaltemperatur ≥ 25 °C) waren am 17. April in Mittel- und Süddeutschland zu verzeichnen. Insgesamt wurden 9 der 10 wärmsten Jahre im 21. Jahrhundert aufgezeichnet. Die davon 4 wärmsten Jahre lagen allein in der zurückliegenden Dekade 2011 bis 2020 und trugen dazu bei, dass diese in Deutschland die wärmste seit Beginn der Wetteraufzeichnungen ist. Das verdeutlicht den rasanten Temperaturanstieg, der sich insbesondere innerhalb der letzten Jahrzehnte vollzogen hat. Der Mensch hat daran einen wesentlichen Anteil. Neben natürlich ablaufenden Prozessen ist es die Verbrennung fossiler Energieträger, die dazu führt, dass große Mengen an Kohlenstoffdioxid direkt in die Atmosphäre freigesetzt werden. Ebenso wirken sich massive Landnutzungsänderungen wie die Abholzung von Wäldern, die Trockenlegung von Mooren und umfangreiche Flächenversiegelung regional aber auch global auf das Klima aus. Klimaprojektionen dienen dazu, die weitere Entwicklung des Klimas in der Zukunft abzuschätzen. Dabei wird die wahrscheinliche Einflussnahme durch den Menschen berücksichtigt. Gemäß der Stärke des angenommenen Einflusses werden Szenerien oder „Konzentrationspfade“ (engl. Representative Concentration Pathways – RCPs) entwickelt. Beim Szenario RCP 8.5 wird davon ausgegangen, dass die Einflussnahme durch den Menschen auch weiterhin „so wie bisher“ erfolgt. Die Zahlenangabe besagt dabei, dass auf der Erde im Jahr 2100 in Folge eines positiven Strahlungsantriebs 8,5 W/m 2 „zusätzliche Energie“, verglichen mit dem vorindustriellen Niveau, zur Verfügung stehen wird, wodurch eine Erwärmung der bodennahen Luftschicht erfolgt. Dies zieht eine Reihe sich gegenseitig ungünstig beeinflussender globaler Wirkungen nach sich. Ein wesentlicher Punkt ist, dass ein Großteil dieser zusätzlichen Energie in den Ozeanen gespeichert wird. Neben der thermischen Ausdehnung in Folge der Erwärmung trägt das Abschmelzen der polaren Eiskappen, bzw. Eisschilde zu einem Anstieg des Meeresspiegels bei. An der Nordseeküste ist seit Beginn regelmäßiger Pegelaufzeichnungen ein Anstieg des mittleren Meeresspiegels um 2 bis 4 mm pro Jahr zu beobachten. Wissenschaftler gehen davon aus, dass sich dieser Trend in der Zukunft fortsetzen wird. Die globale Erwärmung bewirkt außerdem, dass Permafrostböden auftauen. Dabei wird das klimawirksame Gas Methan freigesetzt, welches wiederum die Erderwärmung vorantreibt. Einer aktuellen Veröffentlichung des Copernicus Climate Change Service zufolge war das Jahr 2020 global das wärmste Jahr seit Beginn der Aufzeichnungen und das sechste in einer Folge außergewöhnlich warmer Jahre beginnend mit 2015. Das macht die Dekade 2011 bis 2020 zur wärmsten Dekade, die bislang beobachtet wurde. Im Vergleich zum vorindustriellen Niveau (1850 bis 1900) hat sich die Lufttemperatur um etwa 1,25 °C erhöht. Die größten Temperaturabweichungen vom Mittelwert der Referenzperiode 1981 bis 2010 erreichten über 6 °C über der Arktis und Nordsibirien. Unter der Annahme des RCP8.5-Szenarios wird die global gemittelte Oberflächentemperatur bis zum Jahr 2100 um 2,6 bis 4,8 °C ansteigen. Die höchsten Erwärmungsraten werden über den Kontinenten und an den Polkappen auftreten. Damit verbunden wird der Meeresspiegel global um 45 bis 82 cm ansteigen. In Deutschland ist das Jahresmittel der Lufttemperatur seit 1881 um durchschnittlich 1,6 °C angestiegen. Der Temperaturanstieg ist jedoch regional unterschiedlich stark ausgeprägt. Für die nahe Zukunft (2021 bis 2050) ist unter den Bedingungen des RCP8.5-Szenarios ein weiterer Temperaturanstieg von 0,8 bis 2,3 °C zu erwarten, für den Zeithorizont 2071 bis 2100 liegen die Ergebnisse bei 2,7 bis 5,2 °C. Am stärksten werden die süddeutschen Regionen von diesen Temperaturerhöhungen betroffen sein. Mit der allgemeinen Temperaturzunahme werden die mit Wärme verbundenen Extreme zunehmen und die mit Kälte verbundenen Extreme abnehmen. Im Berliner Raum ist die durchschnittliche Jahresmitteltemperatur seit Beginn der Aufzeichnungen im Jahr 1881 um ca. 1,3 °C angestiegen. Im Jahr 2020 war Berlin mit einer Jahresdurchschnittstemperatur von 11,4 °C das mit Abstand wärmste Bundesland. Für die nahe Zukunft (2013 bis 2060) wird – verglichen mit dem Referenzzeitraum 1971 bis 2000 – für das RCP8.5-Szenarion eine Zunahme der durchschnittlichen Tageshöchsttemperatur von 1,2 bis 1,9 °C erwartet. Bis zum Ende des 21. Jahrhunderts wird sich die Temperaturzunahme fortsetzen, sodass die Tageshöchsttemperaturen dann 2,9 bis 3,7 °C mehr als im Referenzzeitraum betragen können. In den Wintermonaten werden trotz der generellen Temperaturerhöhung aufgrund interannueller Schwankungen auch gegen Ende des Jahrhunderts Kälteereignisse auftreten. Diese werden jedoch zunehmend seltener vorkommen. Abbildungen: Änderung der Variable “Tageshöchsttemperatur” für Berlin (Gitterzelle Dahlem) – Zeitreihen der CORDEX-Modellergebnisse (Abb. 1), Verteilung der absoluten Temperaturänderungen (Abb. 2) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle; (Tabelle). Quellen: AFOK-Hauptbericht Die Niederschlagsentwicklung abzuschätzen ist mit großen Unsicherheiten behaftet. Der globale Niederschlag hat eine sehr große räumliche und zeitliche Variabilität. Über Europa haben die Niederschläge im letzten Jahrhundert um 6 bis 8 % zugenommen, wobei die Zunahme mehrheitlich (10 bis 40 %) über Nordeuropa erfolgte und im Mittelmeerraum und Südeuropa ein Rückgang um bis zu 20 % zu verzeichnen war. Im RCP8.5-Szenario wird sich diese deutliche Zweiteilung der Niederschlagsentwicklung über Europa bis zum Endes des 21. Jahrhunderts verstärken. In den Sommermonaten werden die Niederschläge jedoch über ganz Europa abnehmen. In Deutschland fielen in der Referenzperiode 1961 bis 1990 durchschnittlich 789 mm (das entspricht 789 Litern pro Quadratmeter) Niederschlag pro Jahr. Bezogen auf diesen Zeitraum hat sich die jährliche Niederschlagshöhe innerhalb der vergangenen 135 Jahre um etwa 11 % erhöht. Die größten Jahresniederschlagshöhen werden in den Alpen mit durchschnittlich 1.935 mm erreicht. In 2020 fielen die Niederschläge jedoch in der gesamten Bundesrepublik das dritte Jahr in Folge zu gering aus. Berlin gehört mit schwankenden Jahresniederschlagshöhen zwischen 510 und 580 Litern pro Quadratmeter (l/m 2 ) bundesweit zu den Regionen mit den geringsten Niederschlägen. Etwa 2/3 der Tage im Jahr sind niederschlagsfrei. Die längsten Trockenphasen dauerten im Zeitraum 1971 bis 2000 zwischen 22 und 26 Tagen an. Im Jahr 2020 war Berlin mit rund 492 l/m 2 die trockenste Region Deutschlands. Für die Zukunft wird basierend auf dem RCP8.5-Szenario im Frühling und Winter eine Zunahme der Niederschlagssummen angenommen, die sich zum Ende des Jahrhunderts verstärkt. Ebenso werden die Niederschläge im Herbst in ferner Zukunft (2071 bis 2100) zunehmen. Für die Sommermonate können keine eindeutigen Aussagen getroffen werden. Insbesondere die Darstellung von Starkregenereignissen wird durch die räumliche Variabilität von Niederschlagsereignissen und das relativ seltene Auftreten starker Niederschläge erschwert. Für die Wintermonate wird im Zuge des allgemeinen Erwärmungstrends davon ausgegangen, dass die Niederschläge, die in Form von Schnee auftreten, in naher Zukunft (2031 bis 2060) um ca. 30 bis 40 % und bis zum Ende des 21. Jahrhunderts um etwa 60 bis 70 % zurückgehen werden. Abbildungen: Relative Änderung der jährlichen gemittelten Niederschlagssummen für Berlin (Gitterzelle Dahlem) – Zeitreihen der CORDEX-Modellergebnisse (Abb. 3), Verteilung der relativen Häufigkeitsänderungen (Abb. 4) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle (Tabelle). Quellen: AFOK-Hauptbericht Deutsche Koordinierungsstelle des Weltklimarates “Intergovernmental Panel on Climate Change (IPPC)” The Intergovernmental Panel on Climate Change (IPCC) Copernicus Klimaprojektionen für Deutschland auf der Website des Deutschen Wetterdienstes Klimaforschung am Helmholtz-Zentrum für Umweltforschung GmbH – UFZ Klimageographie an der Humboldt-Universität zu Berlin Institut für Ökologie, Fachgebiet Klimatologie an der Technischen Universität Berlin Institut für Meteorologie, Fachbereich Geowissenschaften an der Freien Universität Berlin
Origin | Count |
---|---|
Bund | 600 |
Land | 188 |
Wissenschaft | 79 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Ereignis | 22 |
Förderprogramm | 520 |
Lehrmaterial | 1 |
Messwerte | 7 |
Strukturierter Datensatz | 10 |
Taxon | 2 |
Text | 66 |
Umweltprüfung | 2 |
unbekannt | 120 |
License | Count |
---|---|
geschlossen | 97 |
offen | 584 |
unbekannt | 62 |
Language | Count |
---|---|
Deutsch | 585 |
Englisch | 222 |
Resource type | Count |
---|---|
Archiv | 7 |
Bild | 6 |
Datei | 51 |
Dokument | 49 |
Keine | 479 |
Unbekannt | 1 |
Webdienst | 4 |
Webseite | 225 |
Topic | Count |
---|---|
Boden | 566 |
Lebewesen & Lebensräume | 705 |
Luft | 409 |
Mensch & Umwelt | 743 |
Wasser | 387 |
Weitere | 719 |