<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Die 36. Änderung des Flächennutzungsplanes machte in der Gemarkung Beedenbostel nordöstlich der Ortslage Beedenbostel die Erweiterung der bestehenden Biogasanlage für den Einsatz von Biogas auf Basis nachwachsender Rohstoffe aus der Landwirtschaft von der Harald und Reinhard Otte OHG möglich.
Ziel des Forschungsvorhabens P2Value ist die Entwicklung eines neuartigen, integrierten und nachhaltigen Technologiekonzepts für die enzymatische Phosphat-Rückgewinnung und die gekoppelte biotechnologische Herstellung von grünen Phosphaten aus Pflanzenschroten sowie biogenen Reststoffen. Im Erfolgsfalle stehen nachhaltige, biotechnologische Verfahren für die Phosphat-Herstellung aus nachwachsenden Rohstoffen zur Verfügung, die in der Lebensmittelherstellung (z.B. als Streichsalze, antibakteriostatische Stoffe, Emulgatoren, Textur) eingesetzt werden. Hervorzuheben ist, dass durch die im Forschungsvorhaben P2Value entwickelte Technologie das enzymatische aus biogenen Reststoffen gewonnene Phosphat frei von Kontamination ist und Umweltressourcen schonend (keine Säuren, keine hohen Temperaturen, keine langen Transportwege) hergestellt wird. Zusätzlich führt das Verfahren zu valorisiertem, Phytin abgereichertem Schrot, das deswegen in höheren Massenanteilen in Tierfutter eingesetzt werden kann (bisher auf 10% limitiert). Das P2Value Verfahren fördert die Unabhängigkeit vom Import und leistet somit einen Beitrag zur P-Kreislaufwirtschaft. Unter anderem wird die Reduktion des Phosphateintrags erreicht und die Umweltbelastung somit reduziert durch Vermeidung der Anreicherung des unverdauten Phytins oder Kontaminationen aus dem Mineraldünger im Boden und in Gewässern. Alleinstellungsmerkmal ist, dass die aus nachwachsenden Rohstoffen biotechnologisch hergestellten Phosphate für die Lebensmittelherstellung in ihren Eigenschaften denen der chemisch hergestellten überlegen sind und neue Möglichkeiten für die Valorisierung der Produkte bieten. Perspektivisch ermöglicht die im Forschungsvorhaben entwickelte Phytase/Hefe Toolbox eine größer als 80 % Gewinnung von Phosphat aus Phytin aus nachwachsenden Rohstoffen und ermöglicht im Pilotmaßstab die Herstellung von grünen Polyphosphaten.
Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.
Lehmbauweisen sind die aeltesten Massivbauweisen der Welt. Vor allem in den Gegenden, in denen reichhaltige Tonvorkommen und Sande vorhanden sind, wurden in Europa bis in das 19. Jahrhundert hinein luftgetrocknete Lehmsteine fuer sehr preiswerte Wohn- und Nutzbauten eingesetzt. Erst mit der Einfuehrung der industriellen Brenntechnik wurden die Lehmsteine zunehmend durch gebrannte Ziegel abgeloest. In den letzten 20 Jahren erweckte die Lehmbauweise in Deutschland erneut das oeffentliche Interesse. Als natuerlicher Baustoff, der nur geringe Energieressourcen verbraucht, fanden die luftgetrockneten Lehmsteine besonders im Zuge der biologisch-oekologischen Bewegung bei Ingenieuren und Architekten zunehmend Beachtung. Es zeichnen sich dabei zwei Einsatzfelder fuer luftgetrocknete Lehmsteine ab: Neubau bzw. Restaurierung vornehmlich von Fachwerkbauten. Die Vorteile der Lehmbauweise fuer Mensch und Umwelt liegen auf der Hand. So koennen beispielsweise Strohleichtlehmsteine aus regional vorkommenden, nachwachsenden Rohstoffen energie- und umweltschonend hergestellt werden. Darueber hinaus zeichnen sich Lehmhaeuser durch ein hervorragendes physiologisches Raumklima aus. Die Studie 'Produktion von Strohlehmsteinen' soll im Sinne einer Pilotstudie die Voraussetzungen zur Fertigung, Qualifikation und Vermarktung von Strohlehmsteinen aufzeigen. In einer Modellentwicklung werden Chancen fuer die technische und wirtschaftliche Realisierung der Lehmbauweisen dargestellt. Fuer die Bearbeitung der Studie wird eine interdisziplinaere Zusammenarbeit der Fachhochschule Stralsund, Fachbereich Maschinenbau und der Fachhochschule Neubrandenburg, Fachbereich Bauingenieurwesen gemeinsam mit der Oekologischen Beschaeftigungsinitiative Krummenhagen e.V. (OeBIK) durchgefuehrt.
Ziel des Vorhabens ist die Entwicklung und Bereitstellung einer effizienten, verfahrenstechnischen Lösung zur Herstellung von hochwertigem Kraftersatzstoff für den Flugbetrieb (SAF) aus nachhaltigen Quellen. Mit dem Entwurf und der Implementierung einer innovativen Umwandlungstechnologie sollen Stoffkreisläufe geschlossen und bekannte Prozesse in neuartigen, auf dem 'Plug and Play' Prinzip basierten Mikroreaktoren, umgesetzt werden. Die zu entwickelnde innovative Technologie kombiniert das Verfahren der Fischer-Tropsch-Synthese (FTS) mit dem Prozess des Hydrocrackens (HCR) in einem Mikroreaktorsystem. Für die Bereitstellung des Synthesegases (Hauptbestandteile CO und H2) werden verschiedene Quellen genutzt, sodass lokale Reststoffkreisläufe (z.B. Alt- oder Restholz) mit einer Wasserstoffeinspeisung geschlossen und kombiniert werden, wobei der Wasserstoff aus dem Betrieb von Wind- oder Solaranlagen gewonnen wird. Die Vielfältigkeit der Einsatzstoffe aus denen das Synthesegas bereitgestellt wird, macht es notwendig, spezifische auf den Umwandlungsprozess abgestimmte Katalysatoren ein-zusetzen. Bisherige Hemmnisse wie die Größe solcher Anlagen und die damit einhergehende Wirtschaftlichkeit sollen durch Prozessanpassung des Konversionsprozesses überwunden werden, so dass dezentrale Anlagen rentabel betrieben werden können. Folgende Bearbeitungsschwerpunkte sind geplant: a) die Entwicklung eines innovativen Mikrokanalreaktors (MCR) und Überführung in den Pilotmaßstab in dem sowohl das FTS-Verfahren als auch der HCR-Prozess integriert sind. Damit wird eine deutliche Reduzierung der für den Prozess notwendigen Reaktionsräume ermöglicht. b) Aufbau und Implementierung sowie Testbetrieb des Reaktors (Miniplant-Anlage) und anschließender Aufbau der Anlage beim Projektpartner (Pilotanlage) um das Verfahren hinsichtlich seiner Stabilität, Einsatzstoffflexibilität und Robustheit unter realen Bedingungen zu bestätigen, zu testen, und zu validieren.
Ziel des Vorhabens ist die Entwicklung von Verfahren zur Herstellung von Aerogelen mittels aus Altholz gewonnener Rohstoffe (Cellulose, Lignin, Hemicellulose). Aus den Aerogelen werden Dämmstoffe und/oder schadstoffabsorbierende Filter hergestellt, aus denen nach Ende der Gebrauchsdauer wieder die genannten Rohstoffe gewonnen werden können. Zusätzlich werden beispielhaft weitere Varianten aus nachwachsenden Rohstoffen aufgezeigt. Aerogele zeichnen sich durch hervorragende Dämmeigenschaften, geringe Schallübertragung und gute Absorptionswirkung für flüchtige chemische Stoffe aus. Das eröffnet diesen Materialien zahlreiche Anwendungsmöglichkeiten, z.B. als Dämmstoffe oder Filter. Während die ersten Aerogele aus Siliziumdioxid hergestellt wurden, gibt es heute vielseitige Ausgangsmaterialien, die u.a. auch aus nachwachsenden Rohstoffen gewonnen werden können, wie z.B. aus Cellulose, Lignin, Stärke oder aus Polysacchariden. Diese Stoffe können auch aus Abfällen oder Produktionsresten verschiedener Herstellungsverfahren gewonnen werden.
Eine Verbesserung der Erfassungs- und Verwertungsquoten fuer Alt- und Restholz sowie eine Minimierung des Transportaufwandes soll durch den Einsatz in dezentralen Verbrennungsanlagen ermoeglicht werden. Zur Asphaltherstellung werden enorme Mengen an Energie benoetigt, fuer die momentan die fossilen Energietraeger Oel und Gas eingesetzt werden. Diese Energie liesse sich aber prinzipiell mit dem nachwachsenden CO2-neutralen Energietraeger Holz abdecken. Die in der BRD flaechendeckend verbreiteten ca. 850 Asphaltmischanlagen stellen somit ein potential an dezentralen Alt- bzw. Restholzverbrennungsanlagen dar. Des weiteren besteht durch eine ergaenzende Verwertung der Holzasche als Fuellmaterial in der Asphaltproduktion die Moeglichkeit zur Schliessung des Verwertungskreislaufs. In diesem Projekt soll dieser bislang nicht beschrittene Verwertungsweg durch gezielte Zusammenstellung und Aufarbeitung vorhandenen Wissens und durch unterstuetzende Untersuchungen verifiziert werden.
Der Ausgangspunkt zur Entwicklung eines neuartigen Klebers ist das Typhaboard, das derzeit mittels des anorganischen Bindemittels Magnesit zum Baustoff gefertigt wird. Um die vorhandenen Schwachstellen des Materials Magnesitboard (vor allem die Absenkung der Wärmeleitfähigkeit und die Erhöhung der Festigkeit ist wünschenswert) zu überwinden, ist es ein Schwerpunktziel des Projektes ein neues Klebersystem für Rohrkolben (lat. Typha) zur Herstellung Natur basierender Baustoffe zu entwickeln. Ganz wesentlich für die Entwicklung des neuartigen nachhaltigen Klebers ist die Berücksichtigung der ganz speziellen Eigenschaften des Blattmaterials Typha. Wichtig ist dabei auch, dass mit dem neu entwickelten Klebstoff ein Material entwickelt werden kann, das den speziellen bauphysikalischen Anforderungen für einen Einsatz im Baubereich genügt. Oberstes Kriterium bei der Bindemittelentwicklung ist die Rückführbarkeit in den Stoffkreislauf. Weitere Aspekte für die Wahl und Optimierung des Klebstoffes sind Brandschutz, Schimmelpilzresistenz und Festigkeitseigenschaften.
Ziel des Vorhabens ist die Entwicklung und Bereitstellung einer effizienten, verfahrenstechnischen Lösung zur Herstellung von hochwertigem Kraftersatzstoff für den Flugbetrieb (SAF) aus nachhaltigen Quellen. Mit dem Entwurf und der Implementierung einer innovativen Umwandlungstechnologie sollen Stoffkreisläufe geschlossen und bekannte Prozesse in neuartigen, auf dem 'Plug and Play' Prinzip basierten Mikroreaktoren, umgesetzt werden. Die zu entwickelnde innovative Technologie kombiniert das Verfahren der Fischer-Tropsch-Synthese (FTS) mit dem Prozess des Hydrocrackens (HCR) in einem Mikroreaktorsystem. Für die Bereitstellung des Synthesegases (Hauptbestandteile CO und H2) werden verschiedene Quellen genutzt, sodass lokale Reststoffkreisläufe (z.B. Alt- oder Restholz) mit einer Wasserstoffeinspeisung geschlossen und kombiniert werden, wobei der Wasserstoff aus dem Betrieb von Wind- oder Solaranlagen gewonnen wird. Die Vielfältigkeit der Einsatzstoffe aus denen das Synthesegas bereitgestellt wird, macht es notwendig, spezifische auf den Umwandlungsprozess abgestimmte Katalysatoren ein-zusetzen. Bisherige Hemmnisse wie die Größe solcher Anlagen und die damit einhergehende Wirtschaftlichkeit sollen durch Prozessanpassung des Konversionsprozesses überwunden werden, so dass dezentrale Anlagen rentabel betrieben werden können. Folgende Bearbeitungsschwerpunkte sind geplant: a) die Entwicklung eines innovativen Mikrokanalreaktors (MCR) und Überführung in den Pilotmaßstab in dem sowohl das FTS-Verfahren als auch der HCR-Prozess integriert sind. Damit wird eine deutliche Reduzierung der für den Prozess notwendigen Reaktionsräume ermöglicht. b) Aufbau und Implementierung sowie Testbetrieb des Reaktors (Miniplant-Anlage) und anschließender Aufbau der Anlage beim Projektpartner (Pilotanlage) um das Verfahren hinsichtlich seiner Stabilität, Einsatzstoffflexibilität und Robustheit unter realen Bedingungen zu bestätigen, zu testen, und zu validieren.
Origin | Count |
---|---|
Bund | 5034 |
Kommune | 3 |
Land | 234 |
Wissenschaft | 1 |
Zivilgesellschaft | 11 |
Type | Count |
---|---|
Chemische Verbindung | 163 |
Daten und Messstellen | 36 |
Ereignis | 4 |
Förderprogramm | 4331 |
Text | 820 |
Umweltprüfung | 46 |
Wasser | 144 |
unbekannt | 52 |
License | Count |
---|---|
geschlossen | 326 |
offen | 4911 |
unbekannt | 23 |
Language | Count |
---|---|
Deutsch | 5148 |
Englisch | 978 |
Resource type | Count |
---|---|
Archiv | 8 |
Bild | 9 |
Datei | 16 |
Dokument | 138 |
Keine | 2738 |
Multimedia | 1 |
Unbekannt | 6 |
Webdienst | 9 |
Webseite | 2414 |
Topic | Count |
---|---|
Boden | 5260 |
Lebewesen und Lebensräume | 4288 |
Luft | 2363 |
Mensch und Umwelt | 5260 |
Wasser | 1957 |
Weitere | 4712 |