Das Projekt "Analysis of dairy production systems differentiated by location" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Lebensmittel- und Ressourcenökonomik (ILR), Professur Wirtschafts- und Agrarpolitik durchgeführt. Dairy farming across Germany displays diverse production systems. Factor endowment, management, technology adoption as well as competitive dynamics in the local or regional land, agribusiness and dairy processing sectors contribute to this differentiation on farm level. These differences impact on the ability of dairy farms and regional dairy production systems to successfully respond to pressures arising from future market and policy changes. The overall objective of the research activities of which this project is a part of, is to develop a thorough understanding of the processes that govern the spatial dynamics of dairy farm development in different regions in Germany. The central hypothesis of this research project is that management system and technological choices differ systematically across local production and market conditions. The empirical approach will focus on the estimation of farm specific nonparametric cost functions for dairy farms located in across Germany differentiated by time and location. A spatially differentiated data base with information on input use, resource availability, as well as local market conditions for land and output markets will be compiled. The nonparametric approach is specifically suited to disclose a more accurate representation of dairy production system heterogeneity across locations and time compared to parametric concepts as it provides the necessary flexibility to accommodate non-linearities relevant for a wide domain of explanatory variables. The methodology employed goes beyond the state of the art of the literature as it combines kernel density estimation with a Bayesian sampling approach to provide theory consistent parameters for each farm in the data sample.The specific methodological hypothesis is that the nonparametric approach is superior to current parametric techniques and this hypothesis is tested using statistical model evaluation. Regarding the farm management and technological choices, we hypothesize that land suitability for feed production determines the farm intensity of dairy production and thus management and technological choices. With respect to the ability of farms to successfully respond to market pressures we hypothesize that farms at the upper and lower tail of the intensity distribution both can generate positive returns from dairy production. These last two hypotheses will be tested using the estimated spatially differentiated farm specific costs and marginal costs.The expected outcomes are of relevance for the agricultural sector and the food supply chain economy as a whole as fundamental market structure changes in the dairy sector are ongoing due to the abolition of the quota regulation in the years 2014/2015. Thus, exact knowledge about differences and development of dairy cost heterogeneity of farms within and between regions are an important factor for the actors involved in the market as well as the political support of this process.
Das Projekt "Oekotoxikologische Wirkungsschwellen fuer umweltrelevante Stoffe zur Gefahrenbeurteilung bei Altlasten" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umweltchemie und Ökotoxikologie durchgeführt. Auf der Basis der im Rahmen des F+E-Vorhabens 'Basisdaten Oekotoxikologie fuer umweltrelevante Stoffe zur Gefahrenbeurteilung bei Altlasten' erhobenen umfangreichen Datensammlung soll eine Ableitung von oekotoxikologisch begruendeten Wirkungsschwellen fuer altlastenrelevante Stoffe und Stoffgruppen erfolgen. Die Ergebnisse des vorgenannten Vorhabens mit den ausfuehrlich recherchierten terrestrisch und aquatisch relevanten oekotoxikologischen Parametern sowie den umfangreichen Angaben zum Vorkommen der Schadstoffe in der Umwelt erlauben eine Ableitung medienbezogener oekotoxikologisch begruendeter Schadensschwellen, mit dem Ziel einer bundeseinheitlichen Vorgehensweise bei der Bewertung von Altlasten fuer den Bereich der Abschaetzung der Wirkungen auf Oekosysteme.
Das Projekt "Untersuchungen zur Mikrostruktur und zum Setzungsverhalten von Lössböden" wird vom Umweltbundesamt gefördert und von Universität der Bundeswehr München, Institut für Bodenmechanik und Grundbau durchgeführt. Forschungstätigkeiten auf dem Gebiet der Sackungsanfälligkeit von Lössböden waren insbesondere zwischen den 30er und 80er Jahren des 20. Jahrhunderts von nationaler Individualität gekennzeichnet. Erst seit Anfang der 80er Jahre, mit Aufstellung der Arbeitsgruppe 'Geotechnical Properties of Loess' der International Union for Quarternary Research (INQUA), ist eine international referenzierende Forschung auf dem Gebiet der Erfassung bodenmechanischer Eigenschaften von Lössböden zu verzeichnen. Der Schwerpunkt bisheriger Forschungsarbeiten lag auf der Erarbeitung sogenannter Kollapskriterien zur qualitativen Abschätzung des Sackungspotentials bei einem Anstieg des Wassergehalts. Bisher durchgeführten geochemischen Untersuchungen von Lössböden beschreiben zwar die mineralische Zusammensetzung, geben jedoch nur eingeschränkt Aufschluss über die Löslichkeit dieser Bestandteile in Wasser oder deren Einfluss auf das Sackungsverhalten. Sämtliche bis dato veranlassten Untersuchungen zum Kollapsverhalten der metastabilen Bodenstruktur von Lössböden wurden für den statischen Lastfall angestellt. Das Verformungsverhalten von Lössböden unter zyklischer Lasteinwirkung hingegen bedarf einer intensiveren wissenschaftlichen Betrachtung. In der vorliegenden Arbeit wird erstmals der Anteil leicht wasserlöslicher mineralischer Bestandteile eines afghanischen Lössbodens ermittelt und anhand von Parameterstudien der Einfluss des Ton- und Kalkgehalts auf das Hydrokonsolidationsverhalten untersucht. Betrachtungen der makro- und mikroskopischen Bodenstruktur ermöglichen belastbare Aussagen über das Verhalten und die Bedeutung des Porenraumes beim Übergang einer metastabilen Bodenstruktur in eine dichtere und somit stabilere Lagerung. Die aus den eigenen Untersuchungen gewonnenen Erkenntnisse dienen als Grundlage für die Formulierung einer neuen, empirisch-deduktiven Prognosemethode zur qualitativen Abschätzung der infolge Hydrokonsolidation zu erwartenden kollapsartigen Verformung (Kollapsverformung). Neben der Vorstellung der Prognosemethode für den statischen Lastfall wurden dynamische Triaxialversuche zur vergleichenden Untersuchung der dynamischen Stabilität metastabiler und idealverdichteter Lössböden angestellt. Sämtliche bodenmechanischen und bodenphysikalischen sowie physiko- und geochemischen Untersuchungen erfolgten an geologisch rezent gebildeten, alluvial und fluvial abgelagerten afghanischen Lössböden der Regionen BALKH und KUNDUZ.
Das Projekt "Changes in Radiation and Heat Budget of the Earth since the International Geophysical Year (IGY)" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Atmosphäre und Klima durchgeführt. The present proposal is aimed at concluding the on-going project that was initiated two years ago. Recent developments in observational techniques and computational capacities produced an unprecedented wealth of information on radiation and energy budget of the global climate system both for the top of the atmosphere (TOA) and for the earth's surface (BOS). We use this opportunity to tackle core issues in the heat budget of the earth. The objective of the present project is to investigate four major problems in the earth's energy balance at the earth's surface by reconstructing the high-resolution energy budget for the earth's surface and its variations with time. Four major questions are 1) missing absorption; 2) greenhouse effect paradox; 3) direct evidence of the enhanced greenhouse effect, and 4) trend in evaporation. The project will use Re-analyses, satellite-based estimations, and the ground measurements. The expected product is not the traditional distributions of climatological mean fluxes, but the global distribution of fluxes for each month and each year during the 45 years, starting approximately in 1958. This period has the best quantity and quality of data on this subject, and covers major climatic events such as important volcanic eruptions (1963 Agung; 82 El Chichon; 91 Pinatubo), powerful El Nino and NAO events and the 25 year cooling in the middle of the 20th century followed by the rapid global warming.
Das Projekt "TEMPS-B: Ground ice and water content estimation and integrative analysis of mountain permafrost monitoring elements" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. Subproject B of the SNF-sinergia project TEMPS 'The Evolution of Mountain Permafrost in Switzerland' aims at a process-oriented understanding of the landform-specific sensitivity of mountain permafrost (bedrock terrain, talus slopes, rock glaciers and ice-cored moraines) to climate anomalies by performing a joint analysis of a comprehensive set of surface and subsur- face temperature, geophysical, meteorological and kinematic monitoring data from already established permafrost sites in the Swiss Alps. The project will focus on gaining a better understanding of the landform-specific dominant fac- tors responsible for changes in ice and water contents. Based on geophysical surveys and high-resolution geophysical monitoring, it is planned to systematically determine (i) the 4-phase (rock/air/ice/water) fractional composition of the ground on different landforms, (ii) their temporal changes, and (iii) their relation to changes of thermal and meteorological parameters at the same sites. A particular focus will be on analyzing the relation between the temporal changes in geophysi- cal properties of the subsurface to concurrent changes in the movement rates of rock gla- ciers to investigate the role of snow melt and groundwater for rock glacier movement.
Das Projekt "Co-estimation of the Earth main magnetic field and the ionospheric variation field" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Mathematik durchgeführt. The aim of this project is to co-estimate models of the core and ionosphere magnetic fields, with the longer-term view of building a 'comprehensive' model of the Earths magnetic field. In this first step we would like to take advantage of the progresses made in the understanding of the ionosphere by global M-I-T modelling to better separate the core and ionospheric signals in satellite data. The magnetic signal generated in the ionosphere is particularly difficult to handle because satellite data provide only information on a very narrow local time window at a time. To get around this difficulty, we would like to apply a technique derived from assimilation methods and that has been already successfully applied in outer-core flow studies. The technique relies on a theoretical model of the ionosphere such as the Upper Atmosphere Model (UAM), where statistics on the deviations from a simple background model are estimated. The derived statistics provided in a covariance matrix format can then be use directly in the magnetic data inversion process to obtain the expected core and ionospheric models. We plan to apply the technique on the German CHAMP satellite data selected for magnetically quiet times. As an output we should obtain a model of the ionospheric magnetic variation field tailored for the selected data and a core-lithosphere field model where possible leakage from ionospheric signals are avoided or at least reduced. The technique can in theory be easily extended to handle the large-scale field generated in the magnetosphere.
Das Projekt "Watershed sediment yield modelling for data scarce areas; a case study, Awash River Basin, Ethiopia" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Wasserbau durchgeführt. The main goal of the research was to device an alternative solution for watershed sediment yield modelling for data scarce areas where the existing physically based models can not be applicable. Awash River Basin in Ethiopia was selected as case study area. GIS data on soil, land use, precipitation, temperature, stream flow and suspended sediment yield was collected from the Federal Ministry of Water Resources of Ethiopia (FMWRE) and from the National Metrology Service Agency (NMSA) offices. Soil data obtained from FMWRE and Food and Agriculture Organization (FAO) world soil 1974 database was used for derivation of the soil erodibility factor (ERFAC) estimation equation. The ratio of silt to sand and clay content was considered as the governing factor for soil erodibility in developing the ERFAC equation. The SWAT2005 model was selected for calibration and validation of stream flow and sediment yield. A sensitivity analysis was carried out to prioritize model calibration parameters. From the sensitivity analysis, curve number II (CN2), soilwater available to plants (SOL-AWC) and ground water base flow factor (ALPHA-BF) were selected as major stream flow calibration parameters. Similarly CN2, SURLAG (surface lag), slope and sediment routing factor (SPCON) were taken as the major sediment calibration parameters. Parameters related to the soil properties and river channel characteristics were given special attention during the model calibration. Eleven years (1990-2000) stream flow and sediment data were used for model calibration and six years data (2001-2006) were used for model validation. Calibration has been done at three gauging stations located in the Awash River basin. The statistical indicators, Coefficient of determination (R2), Nash-Sutclife efficiency (NSE), Root mean square error observations standard deviation (RSR were applied to evaluate the calibration and validation results. The values of these indicators were used to ratethe performance of the model. Watershed geomorphologic and topographic factors were extracted from the SWAT2005 watershed configuration, using a GIS tool and empirical equations. The relative importance of the factors was determined using Pearsons correlation coefficient based on the sediment yield output obtained from the SWAT2005 model calibration. The results show that, the sediment yield is highly correlated with stream flow, watershed area and watershed slope. Based on the identified parameters and the SWAT2005 model output, an alternative sediment yield estimation equation was derived and checked for its validity.
Das Projekt "COST Action TU0702 Real-time monitoring, surveillance and control of road networks under adverse weather conditions" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Immobilienökonomie, Infrastrukturplanung und Projektmanagement (IIP) durchgeführt. The main objective of the Action is to understand better the impacts of weather on freeways/motorways as well as on urban networks highway operations and to develop, promote and implement strategies and tools to mitigate those impacts. Adverse weather conditions can have a significant impact on traffic operations and quality of traffic flow. The advanced technologies for collecting and archiving weather data can assist the development of intelligent weather-based traffic management strategies, monitoring and control systems. In view of the paramount importance of weather-responsive tools for real-time traffic surveillance, this project will focus on the development of strategies and techniques aimed at improving the road traffic management and safety. The main goal is to mitigate the negative impacts of adverse weather conditions to traffic flows and to predict the traffic flows under adverse weather conditions. The term of 'adverse weather conditions refers to the meteorological conditions that decrease the visibility and worsen the pavement conditions. This project will bring together researchers actively working on road networks related issues. It will concentrate on mutually complementary methodologies for modelling, estimation and control that will improve the safety of traffic networks. Traffic flows are highly dependent on weather conditions and researches on this issue are very limited in the literature. Next, traffic flow prediction by reliable algorithms will be addressed in tight connection with the traffic sensor network. This project will address also many issues related to efficient, reliable and quick exchange of information and data over sensor networks for vehicular traffic. The data are received only at boundaries between some segments and averaged within possibly irregular time intervals. Additionally, there are missing data and sensor failures that need to be taken into account. Further, with the developed models and estimators, advanced control strategies will be developed dealing with appropriate fusion of the multiple sensor data.
Das Projekt "Carbon, water and nutrient dynamics in vascular plant- vs. Sphagnum-dominated bog ecosystems in southern Patagonia" wird vom Umweltbundesamt gefördert und von Universität Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich 14 - Geowissenschaften durchgeführt. In bog ecosystems, vegetation controls key processes such as the retention of carbon, water and nutrients. In northern hemispherical bogs, a shift from Sphagnum- to vascular plant-dominated vegetation is often traced back to Climate Change and increased anthropogenic nitrogen deposition and coincides with substantially reduced capacities in carbon, water and nutrient retention. In southern Patagonia, bogs dominated by Sphagnum and vascular plants coexist since millennia under similar environmental settings. Thus, South Patagonian bogs may serve as ideal examples for the long-term effect of vascular plant invasion on carbon, water and nutrient balances of bog ecosystems. The contemporary balances of carbon and water of both a bog dominated by Sphagnum and vascular plants are determined by CO2- H2O and CH4 flux measurements and an estimation of lateral water losses as well as losses via dissolved organic and inorganic carbon compounds. The high time resolution of simultaneous eddy covariance measurements of CO2 and H2O in both bog types and the strong interaction between climatic variables and the physiology of bog plants allow for direct comparisons of carbon and water fluxes during cold, warm, dry, wet, cloudy or sunny periods. By the combination with leaf-scale measurements of gas exchange and fluorescence, plant-physiological controls of photosynthesis and transpiration can be identified. Long-term peat accumulation rates will be determined by carbon density and age-depth profiles including a characterization of peat humification characteristics. A reciprocal transplantation experiment with incorporated shading, liming and labeled N addition treatments is conducted to explore driving factors affecting competition between Sphagnum and vascular plants as well as the interactions between CO2-, CH4-, and water fluxes and decisive plant functional traits affecting key processes for carbon sequestration and nutrient cycling. Decomposition rates and driving below ground processes are analyzed with a litter bag field experiment and an incubation experiment in the laboratory.
Das Projekt "Drivers and mechanisms of 13C discrimination in Cleistogenes squarrosa (C4) - reducing uncertainties on bundle sheath leakiness" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Grünlandlehre durchgeführt. The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.
Origin | Count |
---|---|
Bund | 32 |
Type | Count |
---|---|
Förderprogramm | 32 |
License | Count |
---|---|
offen | 32 |
Language | Count |
---|---|
Deutsch | 32 |
Englisch | 29 |
Resource type | Count |
---|---|
Keine | 32 |
Topic | Count |
---|---|
Boden | 28 |
Lebewesen & Lebensräume | 30 |
Luft | 24 |
Mensch & Umwelt | 32 |
Wasser | 23 |
Weitere | 32 |