API src

Found 1307 results.

Sanierung des Altstandortes Kraftwerk Borken

Am Altstandort des Kraftwerkes Borken sind nach Demontagearbeiten 22000 Liter PCB-haltiges Trafooel ausgelaufen, wobei akute Gefahr fuer das nur 40 Meter entfernt liegende Fliessgewaesser Schwalm bestand. Im Verlauf der Sanierungsarbeiten ist eine weitere Altlast durch Trafooel festgestellt worden . Boden und Grundwasser waren hochgradig kontaminiert, bis zu 2000 mg/l Oel in Phase. Durch rastermaessige Sondierungen wurde das Schadensausmass ermittelt. Als aktive hydraulische Sanierungsmassnahme wurden zwei Sanier- und Spuelbrunnen mit Drainagesystem errichtet. Die langfristige Grundwassersanierung erfolgt durch eigene Reinigungsanlage (chemisch/physikalisch). Das ausgehobene Bodenmaterial (ca. 1500 t) wird mikrobiell aufgearbeitet von der Firma Umweltschutz Nord. - Erstellung von Sanierungsplaenen, genehmigungsrechtliche Antraege. - Die Grundwassersanierung wurde durch eigens konstruierte oberflaechenabsaugende Edelstahlbehaelter, in denen sich Tauchpumpen befanden, welche bewirkten, dass in erster Linie das auf der Oberflaeche der Sanierungsbrunnen aufschwimmende Oel entfernt und zur Abscheide- und Sorptionsanlage gefoerdert wurde, durchgefuehrt.

Kombination biologischer und chemischer Verfahren zur Ammoniumabscheidung aus Abwaessern

Mit Ammonium schwach belastete Abwaesser lassen sich biologisch mit sehr einfachen Verfahren reinigen. Bei sehr hoch belasteten Abwaessern koennen sich jedoch erhebliche Schwierigkeiten ergeben. Von besonderer Bedeutung ist die Abscheidung des Ammoniums dann, wenn bei aerober Betriebsweise mit Biogasproduktion Ammonium in groesserem Umfang durch die biologische Umsetzung entsteht. Unsere Entwicklung, die sich ausgezeichnet bewaehrt hat, zielt darauf ab, das entstandene Ammonium durch Zugabe von Chemikalien abzuscheiden. Es liegen Ergebnisse von Untersuchungen vor, die ueber mehrere Jahre durchgefuehrt wurden. Anwendungsbereiche: Das Verfahren eignet sich insbesondere zur Reinigung industrieller Abwaesser mit Biogasproduktion und integrierter Abscheidung von Ammonium.

Untersuchung und Optimierung der dynamischen Betriebseigenschaften des Oxyfuelbetriebenen Zementklinkerbrennprozesses zur CO2-Abscheidung

Abluftfilterung an KKW nach schweren Stoerfaellen

Kernschmelzunfaelle in KKW fuehren durch die Schmelzen-Betonreaktion zu einem Druckanstieg im Sicherheitsbehaelter. Eine Moeglichkeit, das Bersten des Sicherheitsbehaelters zu vermeiden, ist eine Abluftfilterung ueber Filterkomponenten zur Abscheidung von Radiojod und Aerosolen mit einem Volumenstrom, der zur Konstanthaltung des Druckes im SB ausreicht. Hierbei werden Filterelemente benoetigt, die hohe Abscheidewirkung bei hohen Temperaturen, hohem Strahlenpegel und Feucht- und Dampfgehalt haben.

Entwicklung und Erprobung eines effizienten CO2-Abscheidungsverfahrens auf der Basis wabenstrukturierter Adsorbentien

Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-how auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Biogene Opalisotope - neue Proxies zur Untersuchung vergangener Nährstoffkreisläufe und hydrographischer Strukturen im Südpazifik in Beziehung zu der Entwicklung des Klimas und der antarktischen Kryosphäre

Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur

Die synthetische Materialchemie steht vor enormen Herausforderungen: Die Energiewende erfordert völlig neue Materialien mit herausragenden Eigenschaften - effektive Fotokatalysatoren für die solargetriebene Wasserstoffentwicklung, effiziente Energiespeichermaterialien, Materialien für Energiekonversion und vieles mehr. Auf der anderen Seite besteht die zwingende Notwendigkeit des ressourcenschonenden Einsatzes von Rohstoffen und Energie durch effizientere Herstellung bekannter und bereits verwendeter Materialien. Hier müssen nachhaltige chemische Prozesse erdacht und entwickelt werden, die bei niedrigerer Temperatur ablaufen, höhere Reinheit und Ausbeute ermöglichen und weniger Abfall produzieren. Eine Erfolg versprechende Option hierfür ist die Nutzung von ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) - organische Salze, die bereits unterhalb 100 Grad Celsius, oftmals sogar bei Raumtemperatur, als hoch polare Flüssigkeiten vorliegen. Die einzigartigen Eigenschaften dieser neuartigen 'Designer-Lösungsmittel' lassen sich durch vielfältige Variation ihrer chemischen Zusammensetzung an das jeweilige Synthesesystem adaptieren. Vielversprechende erste Forschungsergebnisse zeigen, dass unter Nutzung von ILs anorganische Materialien (Metalle, Legierungen, Halbleiter, Hartstoffe, Funktionswerkstoffe etc.) unter Umgebungsbedingungen hergestellt werden können. Dadurch lassen sich Energieeinsatz und technischer Aufwand im Vergleich zu den bisher notwendigen Hochtemperaturprozessen, wie Schmelzreaktionen, Solvothermalsynthesen oder Gasphasenabscheidungen, enorm reduzieren. Zugleich werden chemische Materialsynthesen besser steuerbar, was ebenfalls die Energie- und Rohstoffeffizienz erhöht. Unabhängig davon eröffnen Synthesen in ILs die Möglichkeit, auch völlig neue Niedertemperaturverbindungen mit noch unbekannten chemischen und physikalischen Eigenschaften erstmalig zugänglich zu machen. Tatsächlich lassen sich in diesem frühen Stadium der Forschung noch längst nicht alle wissenschaftlichen, ökonomischen und ökologischen Implikationen abschätzen. Somit sind die Ziele des Schwerpunktprogramms: (1) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien, (2) Entdeckung neuartiger, auch unorthodoxer Funktionsmaterialien, die nur durch die Synthesen nahe Raumtemperatur in ILs zugänglich sind, (3) Verständnis der Prinzipien von Auflösung, Reaktion und Abscheidung anorganischer Feststoffe in ILs.

Schwerpunktprogramm (SPP) 1708: Materialsynthese nahe Raumtemperatur; Priority program (SPP) 1708: Material Synthesis near Room Temperature, Elektrochemische Synthese von III-V (GaN, InN, GaSb, InSb, AlSb) und Metallsulfid (ZnS, GaS) Verbindungshalbleitern und deren Nanostrukturen aus ionischen Flüssigkeiten

Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.

Behandlung von Oelabscheider- und Strassensammlergut

Entwicklung neuer Verfahren fuer die Phasentrennung, Eindickung und Entwaesserung der Schlaemme sowie die Aufbereitung des Abwassers; die Abtrennung auch der nicht rezyklierbaren Anteile sind im Gewaesserschutz notwendig. Richtig gefaellt koennen sie verbrannt oder deponiert werden. Bearbeitet werden zwecks Gewaesserschutz insbesondere die oeligen Restanteile - nach Abtrennung recyclierbarer Oelfraktionen - die nicht in Wasser und Boeden gelangen duerfen. Die noch zurueckgehaltenen Fraktionen koennen als Oxide oder Sulfide gefaellt und verbrannt oder deponiert werden.

Nachweis der Machbarkeit der CO2-Abtrennung mittels CycloneCC-Technologie in der Zementindustrie

Holcim (Süddeutschland) GmbH wird in dem Vorhaben der Erstanwender der sogenannten 'CycloneCC-Technologie' als 'End-of-Pipe'-Lösung innerhalb der Zementindustrie im industriellen Maßstab sein. Im Projekt PRIDE-ID wird ein Versuch der Technologie zur Abscheidung unvermeidbarer CO2-Emissionen mittels realer Prozessgase in einem Zementwerk erfolgen. Die CycloneCC-Technologie, welche eine CO2-Abtrennung mittels Rotating Packed Bed-Komponente einsetzt, ist als innovative, kostengünstige CO2-Abscheidungstechnologie von dem Unternehmen Carbon Clean entwickelt worden (eingebunden als Unterauftragnehmer). Zudem ist im Rahmen des zu fördernden Vorhabens die Universität Stuttgart als Projektpartner eingebunden, welche den Einsatz der CycloneCC-Technologie wissenschaftlich begleiten und CO2-Nutzungsszenarien für eine perspektivische Skalierung der Technologie erarbeiten wird. Als weiterer wissenschaftlicher Partner charakterisiert das Institut für Nichtklassische Chemie e.V. die Wirkkomponenten und deren Alterungsprodukte in der Aminlösung und identifiziert die Mechanismen der Alterungsreaktionen. Ziel des Projekts ist die Installation einer Versuchsanlage zur CO2-Abtrennung mit der CycloneCC-Technologie im Zementwerk Dotternhausen, um 10 TPD CO2 aus dem Gasstrom des Zementwerks abzuscheiden. Das Projekt wird am Gelände des Holcim Zementwerk in Dotternhausen und unter Verwendung eines Teilabgasstromes des Werkes stattfinden. Holcim wird die Testkampagne durch Mitarbeiter vor Ort unterstützen und Probenentnahmen gewährleisten. Anschließend wird Holcim bei der Erarbeitung des Skalierungskonzept unterstützen. Holcim wird weitreichende Kenntnisse im Bereich Verbrennungsprozess und Betriebsweisen in der Zementproduktion, der Verwendung von CO2 als Rohstoff sowie erforderliche Prozessdaten (u.a. für die Charakterisierung der Stoffströme und potenzielle Störkomponenten) in das Vorhaben einbringen.

1 2 3 4 5129 130 131