API src

Found 1312 results.

Leistungssteigerung bei der Querstrommikrofiltration durch Dean-Wirbel

Druckgetriebene Filtrationsprozesse, wie z.B. die Querstrommikrofiltration, sind in ihrer Leistungsfaehigkeit durch Effekte wie Fouling und Konzentrationspolarisation bzw. Deckschichtwachstum beschraenkt. Ziel der hier genannten Arbeit ist es, durch eine gezielte Induzierung von Stroemungsinstabilitaeten in Form von Sekundaerstroemungen das Deckschichtwachstum an der Membran zu limitieren, somit hoehere Filtratfluesse zu erzielen und den Filtrationsprozess insgesamt effizienter zu betreiben. Die Stroemungsinstabilitaeten werden durch die Stroemungsfuehrung in maeanderfoermig gekruemmten Kapillarmembranen aufgrund von Zentrifugalkraeften erzeugt. In Technikumsversuchen mit Latex- und Hefesuspensionen konnte nachgewiesen werden, dass sich der Filtratfluss durch den Einsatz von Dean Wirbeln gegenueber der Filtration mit geraden Kapillarmembranen um bis zu 140 Prozent steigern laesst, die Effizienz des Prozesses kann bei gleichem spezifischen Filtratfluss sogar um bis zu 400 Prozent hoeher sein. Neben den experimentellen Untersuchungen erfolgt eine intensive theoretische Betrachtung des Filtrationsprozesses. Mit Hilfe einer CFD-Software werden die hydrodynamischen Vorgaenge untersucht und in Hinblick auf den Deckschichtaufbau analysiert. Die Berechnung mehrphasiger Stroemungen und der Ablagerungsmechanismen von Partikeln soll in Zukunft durch die Simulation des dynamischen Deckschichtaufbaus in maeanderfoermig gekruemmten Kapillarmembranen erfolgen und zur Optimierung von Filtrationsmodulen hinsichtlich der Hydrodynamik herangezogen werden.

Kombination biologischer und chemischer Verfahren zur Ammoniumabscheidung aus Abwaessern

Mit Ammonium schwach belastete Abwaesser lassen sich biologisch mit sehr einfachen Verfahren reinigen. Bei sehr hoch belasteten Abwaessern koennen sich jedoch erhebliche Schwierigkeiten ergeben. Von besonderer Bedeutung ist die Abscheidung des Ammoniums dann, wenn bei aerober Betriebsweise mit Biogasproduktion Ammonium in groesserem Umfang durch die biologische Umsetzung entsteht. Unsere Entwicklung, die sich ausgezeichnet bewaehrt hat, zielt darauf ab, das entstandene Ammonium durch Zugabe von Chemikalien abzuscheiden. Es liegen Ergebnisse von Untersuchungen vor, die ueber mehrere Jahre durchgefuehrt wurden. Anwendungsbereiche: Das Verfahren eignet sich insbesondere zur Reinigung industrieller Abwaesser mit Biogasproduktion und integrierter Abscheidung von Ammonium.

Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Entwicklung und Optimierung keramischer Support- Membranen für die Abscheidung von CO2- und H2-selektiven Gastrennmembranen

Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.

Entwicklung und Erprobung eines effizienten CO2-Abscheidungsverfahrens auf der Basis wabenstrukturierter Adsorbentien

Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-how auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.

Tintenstrahldruck für Industrielle Perowskit-Silizium Tandemsolarzellen, Teilvorhaben: Entwicklung skalierbarer Produktionsprozesse

Entwicklung eines innovativen Adsorptionsmittels auf Kohlenstoffbasis zur Reinigung wasserstoffhaltiger Gase als ein Baustein der Wasserstoffwirtschaft, Teilprojekt: Wissensbasierte Entwicklung von Aktivkohlen speziell zur Wasserstoffabtrennung

Untersuchung und Optimierung der dynamischen Betriebseigenschaften des Oxyfuelbetriebenen Zementklinkerbrennprozesses zur CO2-Abscheidung

Tintenstrahldruck für Industrielle Perowskit-Silizium Tandemsolarzellen, Teilvorhaben: Entwicklung von Druckprozessen und Anlagendesign

Neuartige biobasierte UV-Druckfarben und schaltbare Oberflächen für die recyclinggerechte Herstellung von Sicherheitsprodukten (RecyBioPrint), Teilvorhaben: Grundlegende Erforschung neuartiger Schichten aus biobasierten Materialien zur gezielten Steuerung der Haftung

Analytik zur Gasaufbereitung und Methanolsynthese, C2C3-L-SI: Das Ziel des Clusterprojekts Carbon2Chem® ist die Entwicklung und Bereitstellung von technischen Bausteinen für die Abscheidung und Nutzung von CO und CO2 aus unterschiedlichen CO2-Quellen als Beitrag zum Klimaschutz

1 2 3 4 5130 131 132