API src

Found 887 results.

Similar terms

s/absoption/Absorption/gi

Release of hexavalent chromium from ore processing residues and the potential of biochar for chromium immobilization in polluted soils

Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Interaktive Einflüsse von Pflanzeneigenschaften und Klima auf den organischen Bodenkohlenstoff entlang der chilenischen Küstenkordillere

Der Eintrag organischen Kohlenstoffs in den Boden ist eine der Hauptsteuergrößen für Prozesse der Verwitterung und Erosion und wird im Wesentlichen durch das Zusammenspiel von Klima und Vegetation gesteuert. Ein wichtiges Ziel des DFG-Schwerpunktprogrammes EarthShape (SPP 1803) ist es, zu verstehen, wie gerade diese Interaktionen den Bodenkohlenstoff, der zum einen eine mikrobielle Energiequelle darstellt und zum anderen als stabilisierender Faktor der Erosion entgegenwirkt, beeinflussen. Das beantragte Projekt hat daher zum Ziel, die organische Kohlenstoffdynamik ausgehend von der Pflanze über die Streu in den Boden zu untersuchen und die Einflüsse des Klimas und der Vegetation zu entkoppeln. Die Bedeutung von Klima- und Pflanzeneigenschaften ist skalenabhängig, daher wird ein skalenübergreifender Forschungsansatz verfolgt, der unterschiedliche räumliche und klimatische Skalen abdeckt. Diese umfassen drei Biome entlang der chilenischen Küstenkordillere (arid, mediterran, nass-gemäßigt) und jeweils 2 unterschiedliche Untersuchungsflächen innerhalb dieser Biome. Die Erfassung verschiedener Pflanzengesellschaften und des entsprechenden Bodenkohlenstoffs auf diesen unterschiedlichen Skalen ermöglicht eine Entkopplung klimatischer und vegetationsgebundener Effekte. Die reziproke Translokation von Bodenmonolithen und Streuauflagen sowohl zwischen den Biomen als auch zwischen den Untersuchungsflächen ermöglicht eine detaillierte Entschlüsselung klimatischer und pflanzlicher Effekte. Letztere wird dabei funktional betrachtet und der Einfluss chemischer, physikalischer und phänologischer Pflanzeneigenschaften dargestellt. Zudem wird an den Untersuchungsflächen Unterbodenmaterial an die Erdoberfläche verlagert, um zu überprüfen, ob der darin gespeicherte organische Kohlenstoff auch bei veränderten Bedingungen (z.B. Temperatur) weiterhin aufgrund seiner molekularen Struktur stabil bleibt oder diese Stabilität lediglich durch Effekte im Unterboden determiniert wurde. Die Anwendung innovativer Labormethoden (HPLC, ICM-PS, EA-IRMS, AQUALOG) erlauben eine detaillierte Beschreibung des Kohlenstoffs und beeinflussender Faktoren (C, N, P, 13C, Lignin, Tannin, Spurenelemente) in Blättern, Streu und im Bodenprofil. Die simultane Messung von Absorption und Fluoreszenz inklusive der Anwendung von EEM und PARAFAC erlaubt eine detaillierte Untersuchung des gelösten organischen Bodenkohlenstoffs. Kooperative Datenanalysen sind ein wesentlicher Aspekt des Projektes, um die vielfältigen Ergebnisse, entsprechend des skalenübergreifenden Forschungsansatzes, in Beziehung zu setzen. Unsere Ergebnisse werden ein statistisches Modell beinhalten, das eine Vorhersage des organischen Bodenkohlenstoffgehalts auf Basis von Klima- und Vegetationsmerkmalen in der Wirkungskette Pflanze-Streu-Boden ermöglicht. Dieses Prozesswissen trägt zum Verständnis und der Modellierung des Kohlenstoffkreislaufs als Grundlage reliefbezogener Bodenprozesse bei.

Laborexperimente zum Wärme- und Gasaustausch an der Wasser-/Luftgrenzfläche angetrieben durch Oberflächenkühlung: innovative simultane Wärmebild- und optische Sauerstoffkonzentrationsmessungen

Für eine zuverlässige Modellierung des globalen Kohlenstoffkreislaufs (und somit des globalen Wärmehaushalts) sind detaillierte Kenntnisse über die Menge an Treibhausgasemission/-absorption durch die Wasseroberfläche erforderlich. Die meisten Modelle zur Vorhersage des Gastransferkoeffizienten an der Wasser-/Luftgrenzfläche beruhen nach wie vor hauptsächlich auf empirisch ermittelten Gleichungen, in denen nur die Windgeschwindigkeit als Parameter in Betracht gezogen wird, obwohl der Beitrag des temperaturbedingten Auftriebs zum Gesamttransfer signifikant ist, vor allem bei niedrig bis mittleren Windbedingungen. Um die Genauigkeit der Bestimmung des Gastransferkoeffizienten an der Grenzfläche zu verbessern, wird eine detaillierte Beschreibung des auftriebsgesteuerten Gasaustausches in tiefen Wasserkörpern benötigt. Da bei mäßig bis schwer löslichen Gasen (z.B. Kohlendioxid, Sauerstoff, Methan) der Stofftransfer in einer sehr dünnen Schicht an der Wasseroberfläche stattfindet, ist es eine besondere Herausforderung die Transportprozesse innerhalb dieser dünnen Schicht aufzulösen. Trotz fortgeschrittener Entwicklung der optischen Messtechnik, liegen keine Daten von simultanen Vermessungen der Temperatur- und Gaskonzentrationsfelder unter gut-kontrollierten Laborbedingungen vor. In diesem Projekt wird der Transferprozess von Wärme- und Gas, induziert durch Oberflächenkühlung bei gleichzeitigem Messen der dynamischen Verteilung von Temperatur- und Gaskonzentration (i) auf der Wasseroberfläche und (ii) in einem vertikalen Schnitt im Wasserkörper, untersucht. Hierzu wird ein komplettes lifetime-based laser induced fluorescence System, geeignet um die Sauerstoffdynamik auch innerhalb der dünnen Grenzschicht aufzulösen, entwickelt. Um die Dynamik der Wärmestrukturen an der Oberfläche zu erfassen, wird eine hochpräzise Infrarot Kamera eingesetzt. Für die Ermittlung der 2D Wärmestrukturen im Wasserkörper wird eine intensitätsbasiertes LIF-Thermometrie System angewendet. Neue erste synoptische Labordaten von Wärme- und Gaskonzentrationsfeldern unter konvektionsinduzierter Strömung im relativ tiefen Wasser können damit dargestellt werden. Die Korrelation zwischen thermal und gas Plumes wird bestimmt und deren geometrischen Merkmale sowohl an der Wasseroberfläche als auch im Wasserkörper ermittelt. Des Weiteren wird der Zusammenhang zwischen diesen Merkmalen und der Wärme- und Gasflüsse ermittelt. Eine Reihe von Messungen im Wasserkörper werden zur Bestimmung der Transfergeschwindigkeit (k) über eine große Bandbreite von Temperaturunterschieden zwischen Wasserkörper und Luft durchgeführt. Dies ermöglicht den Zusammenhang zwischen k und der Rayleighzahl des Wasserkörpers zu bestimmen und mit den k-Werten, die durch direkte Quantifizierung anhand der detaillierten simultanen Messungen ermittelt werden, zu vergleichen. Dazu, werden für ausgewählte Fälle PIV- Messungen durchgeführt, um Informationen zum overall Geschwindigkeitsfeld zur Verfügung zu stellen.

Mikroprojekt: AbsoFern - Absorptionswärmepumpe als Fernwärmeübergabestation

Online-Optimierung eines Absorptions- und Desorptionsprozesses für die Koksofengasreinigung

In der Prozessindustrie sind die Anforderungen an die Verfahren wie preiswertes Design und umweltschonenden Betrieb vielseitig, und teilweise auch gegenläufig. Hierdurch steigt der Bedarf an flexibleren Produktionsanlagen, um den steigenden Anforderungen bezüglich der schnell wechselnden Marktanforderungen und der Umweltverträglichkeit gerecht zu werden. Ressourcenschonung und Reduzierung der Umweltbelastung sind Ziele, die die gängigen Verfahren aufgrund der sich ändernden Umweltauflagen (Reinheit der Gasemission) an die Grenzen der Wirtschaftlichkeit bringen. Die Reaktivabsorption und die anschließende Desorption stellt durch die Kombination von Stofftrennung und chemischer Reaktion in Mehrkomponentensystemen ein sehr komplexes Verfahren mit einem hohen Optimierungspotential dar. Dies gilt insbesondere für die im Rahmen des Forschungsprojektes zu untersuchende Ammoniak-Schwefelwasserstoff-Kreislaufwäsche zur Reinigung von Kokereiabgasen. Bei diesem industriell relevanten und hier exemplarisch ausgewählten Prozess basiert der konventionelle Betrieb integrierter Kolonnensysteme auf der vorherigen Auslegung für einen konstanten Betriebspunkt. In der Realität ändern sich jedoch die Randbedingungen, so dass die Prozesse am vorgegebenen Betriebspunkt nicht optimal betrieben werden können. Hier liegt die besondere wissenschaftliche Herausforderung bezüglich der Online-Optimierung, die Umweltrestriktionen sowie alle Produktanforderungen unter den gegebenen Anlagenbegrenzungen und den sich ändernden Echtzeit-Randbedingungen zur Minimierung der Betriebskosten gleichzeitig einzuhalten. Im Rahmen des Forschungsvorhabens wird eine Methodik zur Online Optimierung entwickelt und an einer realen Anlage (AS-Kreislaufwäsche) im Pilotmaßstab erprobt und bewertet. Als Ergebnis ist ein effizientes robustes Online-Optimierungssystem zur Ermittlung optimaler Prozessführungsstrategien für dynamische nichtlineare große Systeme unter Echtzeit-Randbedingungen zu erwarten. Die zu entwickelnde Methodik der Online-Optimierung ist allgemeingültig und soll für die Optimierung anderer Prozesse übertragbar sein.

Einsatz von Philips GreenPower LED string in der In-vitro-Vermehrung

Zielsetzung: Als Zielsetzung ist der Ersatz der seit Jahren verwendeten Fluoreszenzlampen (SYLVANIA GRO-LUX, SYLVANIA STANDARD COOL WHITE) durch Philips GreenPower LED string zu sehen. Um das zu erreichen, werden vorerst über eine Testperiode von drei Jahren umfassende Versuche mit blauen und roten (unterschiedliches Verhältnis des blauen und roten Wellenlängenbereichs kommt zur Anwendung) sowie weißen LED string durchgeführt. Neben der Energieersparnis (bis zu 60% bei der In-vitro-Kultivierung von Pflanzen) sowie der geringeren Wärmeentwicklung, wird der Einfluss von Philips GreenPower LED string auf Endophyten, deren Eliminierung sehr aufwendig ist, untersucht. Bedeutung des Projekts für die Praxis: An der HBLFA für Gartenbau und Österreichische Bundesgärten haben sich in der pflanzlichen In-vitro-Vermehrung folgende Fluoreszenzlampen mit geringer PPFD (photosynthetic photon flux densitiy) von 10-35Ìmol m-2.s-1 bewährt: SYLVANIA GRO-LUX mit langwelligem roten und kurzwelligem blauen Licht; SYLVANIA STANDARD COOL WHITE mit kaltem, weißen Licht. In der Photosynthese absorbiert das Chlorophyll der Pflanze hauptsächlich blaues (Wellenlänge ca. 450nm) und rotes (Wellenlänge ca. 660nm) Licht. SYLVANIA GRO-LUX -Leuchtstoffröhren stellen das für die Photosynthese im blauen und roten Bereich benötigte Licht im optimalen Verhältnis zur Verfügung. Kaltes, weißes Licht findet unter anderem in der In-vitro-Keimung und In-vitro-Vermehrung von Ericaceen (Rhododendron, Vaccinium) Verwendung.In Hinblick auf die Energie-Ersparnis (bis zu 60% bei der In-vitro-Kultivierung von Pflanzen) sowie die geringere Wärmeentwicklung werden Philips GreenPower LED string im verschiedenen Verhältnis des blauen und roten Wellenlängenbereichs (bei Fluoreszenzlampen nicht möglich) und als kaltes weißes Licht getestet. Eine weitere Thematik wird untersucht: Und zwar die Wirkung von Philips GreenPower LED string auf Endophyten, deren Eliminierung sehr aufwendig ist.

Solare Photochemie: Photooxidation verschiedener organischer Verbindungen

In dem Projekt ist es das Hauptziel, bei Photooxidationen (Gegenwart von Luftsauerstoff und Bestrahlung mit sichtbarem Licht (solare Einstrahlung und kuenstliche Lichtquelle) Abwasserreinigung und Synthese von Feinchemikalien durchzufuehren. Dazu wurden bisher Photooxidationen der toxischen Substrate Thiole, Sulfid und Phenole durchgefuehrt. Durch Verwendung von Photosensibilisatoren, die im sichtbaren Bereich absorbieren, kann eine weitgehende Mineralisierung u.a. von Phenolen (auch chlorierten Phenolen) erreicht werden. Mit der solarphotochemischen Synthese von Feinchemikalien ist jetzt begonnen worden.

Regulation der Wurzelwasseraufnahme von Waldbäumen: In situ-Absorptionsraten, Cavitationsgefährdung und morphologische und chemische Anpassung der Wurzeln an Wassermangel bei trockenheitsertragenden (Waldkiefer) und trockenheitsempfindlichen Baumarten (Rotbuche, Hybridpappel)

Die Wasseraufnahme von Pflanzen gehört aus methodischen Gründen zu den am wenigsten erforschten Bereichen der Ökophysiologie. Mit neu entwickelten Miniatursaftflusssystemen soll die Wasseraufnahme von drei wichtigen Nutzbaumarten (Kiefer, Buche, Pappel) in situ an Altbäumen gemessen werden, und oberflächenbezogene Wasseraufnahmeraten in Beziehung zu steuernden Umweltvariablen (Bodenfeuchte, vpd, Strahlung) gesetzt werden. An denselben Wurzeln werden Xylem-Wasserpotentiale, die anatomische Struktur von Periderm und axialem Leitgewebe, die CavitationsGefährdung (nach Sperry) und der Suberin- und Lignin-Gehalt der Periderm-Zellwände (mittels Methanol-Borontrifluorid bzw. Thiacidolyse) gemessen, um pflanzliche Einflussgrößen der radialen (Lpr) und axialen hydraulischen Leitfähigkeit (Kh) der Wurzel zu erfassen. Durch den Vergleich von Baumarten mit unterschiedlicher Trockenheitsempfindlichkeit (Kiefer vs. Buche) und hoher bzw. niedriger Transpirationsrate (Pappel vs. Kiefer) soll geklärt werden, ob (1) hohe Transpirationsraten mit hohen Wurzelwasseraufnahmeraten und großen radialen Wurzel-Leitfähigkeiten verbunden sind, (2) trockenheitsempfindliche Baumarten eine höhere Cavitationsempfindlichkeit ihrer Feinwurzeln aufweisen, und (3) Baumwurzeln sich durch Änderungen von hydraulischer Leitfähigkeit und Wurzeloberflächenentwicklung an Bodentrockenheit anpassen können.

Sorption und abiotische Transformation von organischen Verbindungen im Boden und Grundwasser

In Laborexperimenten (Batch, Durchflussreaktoren, Laborkolonnen) wird das Transport- und Transformationsverhalten von anthropogenen organischen Verbindungen im Untergrund (Boden, Grundwasser) untersucht. Ziel des Projektes ist es, die fuer einen gegebenen Prozess relevanten substanz- und umweltspezifischen Faktoren zu bestimmen und quantitative Struktur-Sorptions- bzw. Struktur-Reaktivitaets-Beziehungen herzuleiten. Als Modellverbindungen dienen substituierte Phenole, Aniline und nitroaromatische Verbindungen sowie polyhalogenierte Kohlenwasserstoffe.

Forschungsschwerpunkt CHEMISCHE DYNAMIK UND SCHICKSAL VON VERUNREINIGUNGSSUBSTANZEN

Das Schicksal der stetig ansteigenden Zahl von chemischen Verbindungen in der Umwelt wird durch viele physikalische, chemische und biologische Prozesse bestimmt. Besonders wichtig sind Vorgaenge an den Grenzflaechen fluessig/gas und fluessig/fest. Die Gleichgewichte an diesen Grenzflaechen bestimmen die Randbedingungen fuer die Verteilung in Wasser, Luft, Boden und Organismen. Felduntersuchungen sollen systematische Daten ueber Vorkommen und Verteilung ausgewaehlter Substanzen liefern. Dateninterpretation mit Verteilungsgleichgewichten und Transportmodellen. Laboruntersuchungen und Literaturstudien zur Bestimmung resp. Beschaffung phys.-chem. Parameter (Verteilungskoeffizienten, Stoffaustauschkoeff., Ab- bzw. Adsorptions-/desorptionsgeschwindigkeitskoeff. etc). Untersuchung chemischer, photochemischer und biologischer Transformations- und Abbauprozesse.

1 2 3 4 587 88 89