API src

Found 1081 results.

Related terms

Markt für Salzsäure, ohne Wasser, in 30%igem Lösungszustand

technologyComment of Mannheim process (RER): Production of sodium sulfate and HCl by the Mannheim process. This process can be summarized with the following overall stoechiometric reaction: 2 NaCl + H2SO4 → Na2SO4 + 2 HCl technologyComment of allyl chloride production, reaction of propylene and chlorine (RER): based on industry data in the US and Europe technologyComment of benzene chlorination (RER): Clorobenzenes are prepared by reaction of liquid benzene with gaseous chlorine in the presence of a catalyst at moderate temperature and atmospheric pressure. Hydrogen chloride is formed as a by-product. Generally, mixtures of isomers and compounds with varying degrees of chlorination are obtained, because any given chlorobenzene can be further chlorinated up to the stage of hexa-chlorobenzene. Because of the directing influence exerted by chlorine, the unfavoured products 1,3-dichlorobenzene, 1,3,5-trichlorobenzene and 1,2,3,5-tetrachlorobenzene are formed to only a small extent if at all. The velocity of chlorination for an individual chlorine compound depends on the compound's structure and, because of this, both the degree of chlorination and also the isomer ratio change continuously during the course of reaction. Sets of data on the composition of products from different reactions are only comparable if they refer to identical reaction conditions and materials having the same degree of chlorination. By altering the reaction conditions and changing the catalyst, one can vary the ratios of different chlorinated products within certain limits. Lewis acids (FeCl3, AlCl3, SbCl3, MnCl2, MoCl2, SnCl4, TiCl4) are used as principal catalysts. The usual catalyst employed in large scale production is ferric chloride, with or without the addition of sulfur compounds. The ratio of resulting chlorobenzenes to one another is also influenced by the benzene:chlorine ratio. For this reason, the highest selectivity is achieved in batch processes. If the same monochlorobenzene:dichlorobenzene ratio expected from a batch reactor is to result from continuous operation in a single-stage reactor, then a far lower degree of benzene conversion must be accepted as a consequence of the low benzene:chlorine ratio). The reaction is highly exothermic: C6H6 + Cl2 --> C6H5Cl + HCl ; delta H = -131.5 kJ/mol Unwanted heat of reaction can be dissipated either by circulating some of the reactor fluid through an external heat exchanger or by permitting evaporative cooling to occur at the boiling temperature. Circulation cooling has the advantage of enabling the reaction temperature to be varied in accordance with the requirements of a given situation. Evaporative cooling is more economical, however. Fractional distillation separates the products. Iron catalyst is removed with the distillation residue.Unreacted benzene is recycled to the reactor. technologyComment of hydrochloric acid production, from the reaction of hydrogen with chlorine (RER): HCl can be either directly prepared or generated as a by-product from a number of reactions. This dataset represents the production of HCl via the combustion of chlorine with hydrogen gas. The process involves burning hydrogen gas and chlorine in a gas combustion chamber, producing hydrogen chloride gas. The hydrogen chloride gas then passes through a cooler to an absorber where process water is introduced, producing aqueous hydrochloric acid. H2 + Cl2 -> 2 HCl (exothermic reaction) References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of tetrafluoroethylene production (RER): The production of fluorochemicals and PTFE monomers can be summarized with the following chemical reactions (Cedergren et al. 2001): CaF2 + H2SO4 -> CaSO4 + 2HF (1) CH4 + 3Cl2 -> CHCl3 + 3HCl (2) CHCl3 + 2HF -> CHClF2 + 2HCl (3) 2 CHClF2 + heat -> CF2=CF2 + 2 HCl (4) This dataset represents the last reaction step (4). Parts of the production are carried out at high pressure and high temperature, 590 ºC – 900 ºC. The first reaction (1) takes place in the presence of heat and HSO3 - and steam. The inventory for the production of hydrogen fluoride can be found in the report (Jungbluth 2003a). Reaction (2) is used to produce trichloromethane. Reaction 3 for the production of chlorodifluoromethane takes place in the presence of a catalyst. The production of PTFE (4) takes place under high temperature pyrolysis conditions. Large amounts of hydrochloric acid (HCl) are generated as a couple product during the process and are sold as a 30% aqueous solution. A large number of other by-products and emissions is formed in the processes (benzene, dichloromethane, ethylene oxide, formaldehyde, R134a, and vinyl chloride) and small amounts of the highly toxic perfluoroisobutylene CF2=C(CF3)2. The by-products in the production of monomers can harm the processes of polymerisation. Because of this, the refinement of the production of monomers has to be very narrow. This makes the process complex and it contributes to a high cost for the PTFE-laminates. (Cedergren et al. 2001). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. Final report ecoinvent data v2.0 No. 8. Swiss Centre for Life Cycle Inventories, Dübendorf, CH.

Antrag nach § 16 BImSchG der Ferro Duo GmbH in Duisburg

Die Ferro Duo GmbH, Vulkanstraße 54 in 47053 Duisburg hat mit Antrag vom 14.06.2021 bei der Bezirksregierung Düsseldorf eine Genehmigung nach § 16 Bundes-Immissionsschutzgesetz (BImSchG) für die wesentliche Änderung der Anlage zum Mahlen von natürlichem und künstlichem Gestein sowie zur Behandlung und zeitweiligen Lagerung von gefährlichen und nicht gefährlichen Abfällen am Standort Vulkanstraße 54, 47053 Duisburg, Gemarkung Duisburg, Flur 320, Flurstücke 124, 129, 136, 139 und 176 beantragt. Antragsgegenstand ist die Errichtung und der Betrieb einer Anlage zur Behandlung von flüssigen, gefährlichen Abfällen. Schwefelsäure und Eisen-II-Chloridlösung sollen in einem Reaktor miteinander vermischt werden. Die beiden Edukte können sowohl Abfall- als auch Produktstatus besitzen. Durch die Mischung der Stoffe im Reaktor entstehen ein chlorwasserstoffhaltiges Gasgemisch sowie festes Eisen-II-Sulfat. Das chlorwasserstoffhaltige Gasgemisch wird einem Absorber zugeführt, in welchem Salzsäure aus dem Gasgemisch regeneriert wird. Das feste Eisen-II-Sulfat aus dem Reaktor wird über einen Sedimentationsbehälter und einen Vakuumbandfilter aus der Anlage transportiert. Das beantragte Vorhaben bedarf einer Änderungsgenehmigung gemäß § 16 BImSchG in Verbindung mit Nr. 8.8.1.1 und Nr. 4.1.21 des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV). Das Vorhaben ist darüber hinaus der Nummer 8.5 Spalte 1 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) zuzuordnen. Daher wurde im Rahmen des Genehmigungsverfahrens eine Umweltverträglichkeitsprüfung durchgeführt. Der vom Antragsteller hierzu vorgelegte UVP-Bericht ist Teil der Antragsunterlagen.

Conditioning fixed-bed filters with fine fractions of granulated iron hydroxide (MyGFH)

The fine fraction of granular ferric hydroxide (MyGFH, < 0.3 mm) is a promising adsorbent for the removal of heavy metals and phosphate, but properties of MyGFH were hitherto not known. The present study aimed at characterizing MyGFH regarding its physical and chemical properties and at evaluating methods for the conditioning of fixed-bed filters in order to develop a process that combines filtration and adsorption. Conditioning was done at different pH levels and for different particle sizes. Anthracite, coke, pumice and sand were studied as potential carrier materials. A method for the evaluation of the homogeneity of the iron hydroxide particle distribution on pumice filter grains using picture analysis was developed. Pre-washed pumice (pH 8.5) proved to lead to high embedment and a homogeneous distribution of MyGFH. Filter runs with phosphate (2 mg/L P) showed similar breakthrough curves for the embedded fine fraction adsorbent and for conventional GFH. © 2018 by the authors.

Biogenic amorphous ferric hydroxide as adsorbent for vanadium removal in drinking water production

Vanadium as toxic heavy metal is a drinking water relevant contaminant. However, there is a lack in treatment processes to meet regulatory requirements (e.g. 4 g l-1 in Germany). This study introduces a novel treatment process - the vanadium adsorption onto biogenic amorphous ferric hydroxide (AFH). Basic mechanisms of adsorption onto AFH are described and compared to granular ferric hydroxide (GFH). Adsorption kinetics and pH dependent isotherms in drinking and ultrapure water, parametrization via the empirical Freundlich and Langmuir models, and bond type and strength assessments via sequential extraction are presented. AFH was generated in pilot waterworks in which Fe(II) and oxygen were dosed and subsequently Fe(II) microbiologically oxidized and precipitated in the filter bed. The backwash-water was collected and used for adsorption experiments. Sequential extraction was executed with vanadium loaded AFH produced in the pilot plant. AFH is identified as alternative adsorbent to GFH with similar affinity and capacity. The isotherms cover a concentration range from 10 g l-1 to 4 mg l-1 and the Freundlich model showed a better fit with the experimental data than the Langmuir model. A bidentate mononuclear inner sphere complex is assumed for vanadium adsorption onto AFH, while a bidentate binuclear inner sphere complex is expected for GFH. Sequential extraction showed a strong bond between AFH and vanadium, which was only mobilized by the last extraction step the dissolution of iron particles. A treatment process - adsorption onto biogenic AFH - is suitable for effective vanadium removal and should be further investigated for technical implementation. © 2023 The Author(s).

Fa. Dyneon GmbH - Errichtung und Betrieb einer neuen FKW-Verwertungsanlage (H16) auf dem Grundstück mit der Flur-Nr. 1535/4 der Gemarkung Burgkirchen

Die Firma Dyneon GmbH beabsichtigt, am o. g. Standort im Chemiepark Gendorf eine neue FKW-Verwertungsanlage (H16) zu errichten und zu betreiben. Das beantragte Vorhaben ist eine nach § 4 BImSchG genehmigungspflichtige Anlage zur Verwertung und Beseitigung von Abfällen mit einer Durchsatzkapazität von mehr als 10 Tonnen gefährliche Abfälle pro Tag - Nr. 8.1.1.1 der 4. BImSchV; außerdem handelt es sich hier um eine Anlage nach Industrieemissions-RL, Nr. 5.2 b) den Anhang I zur IE-RL 2010/75/EU; In der neuen FKW-Verwertung sollen Abgasströme und flüssige Rückstände aus den Anlagen der Firma Dyneon GmbH, sowie in geringem Umfang Abgasströme anderer Standortkunden verbrannt werden. Zusätzlich sollen PFC-haltige (Perfluorcarbons) Abwasserströme aus Anlagen der Firma Dyneon GmbH verbrannt werden. Kernstück der neuen FKW-Verwertungsanlage ist eine Feuerungsanlage mit einer beantragten maximalen Feuerungswärmeleistung (FWL) 13 MW. In dieser Feuerungsanlage werden flüssige Abfälle und Abgase durch Zugabe von Erdgas und Verbrennungsluft verbrannt. Nach einer mehrstufigen Reinigung des Abgases erfolgt die Ableitung ins Freie. Das in den Absorbern anfallende Abwasser wird anschließend zur Umsetzung von Calciumhydroxid zu Calciumfluorid genutzt.

Comparing fine particulate iron hydroxide adsorbents for the removal of phosphate in a hybrid adsorption/ultrafiltration system

The use of micro-sized iron hydroxide adsorbents in mixed reactors is a promising technique for the removal of inorganic contaminants from wastewater within minutes of contact time. This study focusses on phosphate adsorption onto fine fraction granular ferric hydroxide (nGFH) and iron oxy(hydr)oxide agglomerates (IOAs) in a reactor with submerged ultrafiltration (UF) membrane. The performance of the hybrid adsorption/UF membrane system was evaluated for various adsorbents and phosphate concentrations, residence times and concentrations of co-existing ions. The membrane was not fouled at the experimental conditions used (up to 6.3 g/L adsorbent). Phosphate loadings of 20 and 60 mg P/g Fe (36.1 and 108.3 mol P/mol Fe) were reached for nGFH and IOAs, respectively (C0(P) = 4.5 mg/L, deionized water at pH 8, C(Fe) = 0.6 g/L). A shortened residence time of 15 min in the reactor led to a decrease in final loading of 6 mg/g compared to 30 min residence time (54 mg/g compared to 60 mg/g). An extension to 60 min did not result in higher loadings. An increase in adsorbent (IOA) concentration from 0.1 to 0.3 mg/L resulted in an increase of phosphate removal (27 to 35%). Simultaneously, loadings decreased from 50 to 35 mg/g. The application of the developed process for the treatment of artificial secondary effluent resulted in an increase of 87 and 60% in treated volumes until breakthrough (50%) for nGFH and IOAs, respectively, compared to deionized water. Thus, the combined process of adsorption and particle separation using a submerged membrane can be well adjusted according to water composition, initial pollutant concentrations and desired removals. © 2019 Elsevier B.V. All rights reserved.

Pilot-scale vanadium adsorption onto in-situ biogenic amorphous ferric hydroxide

In order to reach 4 (micro)g l-1 vanadium in drinking water adsorption onto in-situ biogenic amorphous ferric hydroxide (AFH) is identified as robust new treatment. The evaluation of its technical feasibility and robustness was the aim of this study. As approach at pilot-scale, Fe(II) and oxygen was dosed before pilot waterworks and Fe(II) subsequently biotically oxidized and precipitated in a filter bed. The so in-situ generated biogenic AFH served as adsorbent for vanadium removal. Results show that an initial vanadium concentration of 30 (micro)g l-1 was removed to below 4 (micro)g l-1, if at least 3 mg l-1 Fe(II) were dosed, resulting in a loading of 8.7 mg V per g AFH. A vanadium concentration of 60 (micro)g l-1 with a dosage of 3 mg l-1 Fe(II) was the upper limit for sufficient removal. Vanadium removal increased with increasing pH in the technical setup, due to faster oxidation of Fe(II) in the supernatant, even though adsorption capacity of AFH decreases with increasing pH. A filtration velocity of 20 m h -1 represented the highest velocity to undercut 4 (micro)g l-1 vanadium in the effluent. By mixing Fe(II) containing groundwater with oxygen and vanadium containing water prior to an adsorption filter with AFH sufficient removal was reached, however dependent on the resulting Fe(II) concentration. © 2023 by the authors

Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide

Adsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (nGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L-1) at pH 7.0, loadings of 24 mg g-1 P (with 3 mg L-1 initial PO43--P) and 17 mg L-1 Si (with 9 mg L-1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to nGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L-1) for 9, 14 and 22 mg L-1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L-1) prior to phosphate (c0 = 3 mg L-1) addition, 28 and 56 days reduce the nGFH capacity for phosphate by 21 and 43%, respectively. Quelle: https://pubs.rsc.org

Competition in chromate adsorption onto micro-sized granular ferric hydroxide

Hexavalent chromium is highly toxic and elaborate technology is necessary for ensured removal during drinking water production. The present study aimed at estimating the potential of a micro-sized iron hydroxide (nGFH] adsorbent for chromate removal in competition to ions presents in drinking water. Freundlich and Langmuir models were applied to describe the adsorption behaviour. The results show a high dependency on the pH value with increasing adsorption for decreasing pH values. The adsorption capacity in deionized water (DI) at pH 7 was 5.8mg/g Cr(VI) while it decreased to 1.9mg/g Cr(VI) in Berlin drinking water (DW) at initial concentrations of 1.2mg/L. Desorption experiments showed reversible adsorption indicating ion exchange and outer sphere complexes as main removal mechanisms. Competing ions present in DW were tested for interfering effects on chromate adsorption. Bicarbonate was identified as main inhibitor of chromate adsorption. Sulfate, silicate and phosphate also decreased chromate loadings, while calcium enhanced chromate adsorption. Adsorption kinetics were highly dependent on particle size and adsorbent dose. Adsorption equilibrium was reached after 60ââą ¯min for particles smaller than 63nm, while 240 min were required for particles from 125nm to 300nm. Adsorption kinetics in single solute systems could be modelled using the homogeneous surface diffusion model (HSDM) with a surface diffusion coefficient of 4x10-14m2/s. Competitive adsorption could be modelled using simple equations dependent on time, adsorption capacity and concentrations only. © 2018 Elsevier Ltd. All rights reserved.

Genehmigungsverfahren nach § 16 BImSchG für die wesentliche Änderung des Biomasseheizkraftwerkes Altenstadt der Heizkraftwerk Altenstadt GmbH & Co. KG, Triebstraße 90, 86972 Altenstadt auf dem Grundstück Fl.Nr. 1964/1 der Gemarkung Altenstadt

Die Heizkraftwerk Altenstadt GmbH und Co. KG, Triebstraße 90, 86972 Altenstadt hat die immissionsschutzrechtliche Genehmigung nach § 16 Abs. 2 BImSchG für die wesentliche Änderung des Biomasseheizkraftwerkes insbesondere durch die Erweiterung der bestehenden Brennstoffpalette um Ersatzbrennstoffe auf dem Grundstück Fl.Nr. 1964/1 der Gemarkung Altenstadt beantragt. Das Vorhaben umfasst im Wesentlichen folgende Anlagenteile, bzw. Maßnahmen: - Erweiterung der bestehenden Brennstoffpalette um den Einsatz von Ersatzbrennstoff, - Errichtung eines neuen Brennstoffbunkers für EBS als Rundbau mit einem Durchmesser von 20 m und insgesamt 4 Andockstationen für die LKW Entladung sowie eines Aufbaus zur Aufnahme der Krananlage, - Errichtung eines zum Bunker gehörenden Gewebefilters zur Abluftreinigung, - Errichtung von Luftkanälen zur Nutzung der Bunkerabluft als Verbrennungsluft für die Wirbelschichtfeuerung, inkl. Kamin zur Ableitung der gereinigten Abluft bei Stillstand der Wirbelschichtfeuerung, - Anpassung / Ergänzung der Fördertechnik, um den EBS aus dem Bunker über Zuteiler, Sichter und Förderschnecken in die Wirbelschichtfeuerung zu fördern, - Erweiterung der Rauchgasreinigungsanlage um folgende Komponenten:  Zyklon zur Abscheidung von Staub aus dem Wirbelschichtfeuerung,  Station zur Zudosierung von Aktivkoks vor die Gewebefilter der Rauchgasreinigung und der Siloabluftreinigung,  Station zur Dosierung eines hochtemperaturstabilen Adsorbens in den Feuerraum der Wirbelschichtfeuerung,  Silo zur Zwischenlagerung von Zyklonasche,  Silo für hochtemperaturstabiles Adsorbens, - Änderung der SNCR-Anlage und der zugehörigen Ammoniakwasserversorgung, - Entfall der Genehmigung für den bisher noch nicht errichteten Reservekessel mit 13,04 MW zur Verfeuerung von Heizöl EL und Erdgas. Das Änderungsvorhaben betrifft eine Anlage nach Nr. 8.1.1.3 des Anhangs 1 zur 4. BImSchV und bedarf eines vereinfachten Verfahrens nach § 16 Abs. 2 Satz 3 i.V.m. § 19 BImSchG. Die Regierung von Oberbayern führt antragsgemäß ein Genehmigungsverfahren nach § 16 Abs. 2 BImSchG durch, da erhebliche nachteilige Auswirkungen durch das Vorhaben nicht zu erwarten sind und eine Umweltverträglichkeitsprüfung nicht erforderlich ist.

1 2 3 4 5107 108 109