Erhoehung des energetischen Outputs von Solarabsorbern durch Variation des Aufbaues und der verwendeten Materialien. Minimierung der Verlustleistung.
Ziel der Untersuchung ist es, von quantitativer Einsicht in das Zusammenwirken von Transportvorgaengen, Porenmorphologie und Porenentstehung ausgehend, die Herstellungsverfahren von poroesen Adsorbentien bzw. Katalysatoren methodisch zu begruenden und zu verbessern.
Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-how auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.
Ziel der Vorhaben ist die Verwendung von geschmolzenen Salzen als Adsorptionsmittel fuer Schwefeldioxid aus Abgasen. In einem Drehrohrofen wird das Entschwefelungsvermoegen von ternaeren, niedrigschmelzenden Karbonatschmelzen untersucht, wobei auch eine regenerative Verwendung der Salze vorgesehen ist, was auch eine Ueberfuehrung des Schwefels in seine umweltfreundliche Elementarform ermoeglicht.
Es werden grosstechnische Verfahren zur biologischen Abluftreinigung entwickelt. Je nach Eigenschaft der Luftschadstoffe kommen Biowaescher, Biofilter oder Kombinationen aus beiden zur Anwendung. Hauptmerkmale der Linde-Verfahren sind: Einsatz schadstoffspezifischer Startkulturen, die im Labor geprueft und identifiziert werden. Dadurch werden sehr kurze Anfahrzeiten und hohe Abbauleistung sowie stabile Betriebszustaende erreicht. Die Startkulturen sind hygienisch unbedenklich. Der Einsatz geordneter Traegermaterialien in den Absorbern beziehungsweise Biofiltern bringt viele Vorteile, wie minimalen Druckabfall der Abluft; dadurch geringen Energiebedarf, homogene Durchstroemung mit guter Raumausnutzung, einfaches Befeuchtungs- und Konditionierungssystem zur Betriebsstabilisierung bei hoher Leistung, kompakte Bauweise, hohe Standzeit der Absorberpackung, Moeglichkeit zur Abreinigung der Absorberpackung durch Wasserstrahl oder Spuelen. Hohe Flexibilitaet in der baulichen Gestaltung, zum Beispiel Hochbauweise. Bei Biowaeschern hat sich der Einsatz des Linpor(xp=R)-Traegermaterials bewaehrt. Die Biomasse kann damit zu 90 Prozent im Reaktorteil konzentriert und immobilisiert werden. Dadurch verringert sich der Durchsatz von Mikroorganismen durch den Absorber und die volumetrische Abbauleistung wird um den Faktor vier erhoeht.
In der Industrie, z.B. bei der Muellvergasung oder bei GuD-Kraftwerken, entsteht unter anderem Fluorwasserstoff (HF). Da HF extrem umweltschaedlich und giftig ist, muss es aus dem Gas entfernt werden. Im Gegensatz zu den konventionellen Nassgasreinigungen kann das Gas trocken bei moeglichst hohen Temperaturen gereinigt werden. Energieverluste infolge des Abkuehlens und Wiederaufheizens koennen vermieden und so der Wirkungsgrad um einige Prozentpunkte erhoeht werden. Zudem entfaellt die Aufbereitung der anfallenden Abwaesser bei der Nassgasreinigung. Die Entwicklung derartiger Verfahren ist Gegenstand dieses Projektes.
Entwicklung eines neuen Verfahrens zur Abtrennung biologisch nicht abbaubarer organischer Stoffe aus Wasser auf der Basis der Adsorption an Aluminiumoxid und der Regeneration des beladenen Oxids mittels chemischer oder thermischer Methoden.
| Origin | Count |
|---|---|
| Bund | 1091 |
| Land | 13 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 18 |
| Daten und Messstellen | 1 |
| Förderprogramm | 1059 |
| Gesetzestext | 17 |
| Text | 13 |
| Umweltprüfung | 5 |
| unbekannt | 11 |
| License | Count |
|---|---|
| geschlossen | 43 |
| offen | 1060 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 1030 |
| Englisch | 131 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 2 |
| Datei | 1 |
| Dokument | 7 |
| Keine | 702 |
| Webseite | 396 |
| Topic | Count |
|---|---|
| Boden | 627 |
| Lebewesen und Lebensräume | 556 |
| Luft | 573 |
| Mensch und Umwelt | 1104 |
| Wasser | 588 |
| Weitere | 1095 |