Standorte von Anlagen für Produktion und Energieumwandlung, an denen Potenziale für Abwärmenutzung bestehen. Die Darstellung erhebt keinen Anspruch auf Vollständigkeit! Weitere Anbieter von Abwärme können jederzeit in diese Darstellung aufgenommen werden.
Ziel des Teilprojektes ist die Untersuchung der Möglichkeit zur Nutzung der direkten Abluft aus den Brennprozessen der Comet Schleiftechnik GmbH. Die direkte Nutzung bringt Kostenvorteile, da Wärmeübertrager wegfallen und erhöht das Potential an rückgewonnener Energie, da Verluste durch Wärmeübertrager vermieden werden. Durch die direkte Nutzung der Abluft kann es jedoch über die Zeit zu Ablagerungen von Stäuben oder Kondensaten auf den Leitungen und Speicherkomponenten kommen, die die Performance des Speichers beeinträchtigen. Daher müssen zunächst die Verschmutzungsmechanismen analysiert werden. Im weiteren Verlauf muss die die Spezifikation für das Speichersystem inklusive gegebenenfalls erforderlichem Filtersystem erstellt werden. Darauf basierend koordiniert Comet den Aufbau und die Inbetriebnahme eines Demonstrators. Im laufenden Betrieb untersucht Comet das Potential unterschiedlicher verfahrenstechnischer Betriebsführungen des Demonstrators und der Möglichkeit eines Power-To-Heat Moduls. Abschließend wird die Wirtschaftlichkeit des Gesamtsystems bewertet.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Im Projekt SuSiDry soll die Nachhaltigkeit von silicatkeramischen Erzeugnissen signifikant verbessert werden. Dazu soll der Energiebedarf bei der Herstellung über die gesamte Herstellkette unter Berücksichtigung von Ausschuss gesenkt werden. Der Nachweis für die Wirksamkeit der im Projekt zu erarbeitenden Maßnahmen wird repräsentativ an der Produktion von Dachziegeln erbracht. Die Übertragbarkeit auf andere silicatkeramische Produkte wird berücksichtigt. Im Projekt werden innovative Methoden zur Prozessverbesserung entwickelt und erprobt. Der Zusammenhang zwischen Rohstoffeigenschaften, Formgebungs-, Trocknungs- und Brennparametern sowie den Produkteigenschaften wird mittels ICME-Methodik (Integrated Computational Materials Engineering) systematisch erarbeitet. Zudem sollen moderne Sensorik- und KI-Methoden in den Herstellprozess der Silicatkeramiken integriert und Konzepte zur Abwärmenutzung für die eingesetzten Brenn- und Trocknungsprozesse ausgearbeitet werden. Die Nutzbarkeit der entwickelten Methodik zur Übertragung der Ergebnisse auf andere Rohstoffe bzw. andere silicatkeramische Produkte soll sichergestellt sein. Die Wettbewerbsfähigkeit der am Projekt beteiligten Industriepartner wird durch eine Reduktion der Herstellkosten und die Verbesserung der Produktqualität langfristig und nachhaltig erhöht. Die gestärkte Wettbewerbsfähigkeit der am Projekt beteiligten Industriepartner soll auch verhindern, dass Produktionsprozesse in Länder mit geringeren Umweltstandards verlagert werden. Sie trägt damit zur Nachhaltigkeit bei. Für Lingl stehen folgende Ziele im Focus: Hardwareentwicklung zur Onlinemessung der Sensorbox und Verifizierung/ Validierung der Trocknungstest mittels dem vorhandenen und optimierten Testtrockner, der hierzu mit I4.0 taugliches PLS-System ausgerüstet wird. Ermittlung von energieeffizienten Trocknungskurven und gleichzeitiges betrachten der Übertragbarkeit der Daten aber auch der Ausbaubarkeit der Steuerung für Trocknung mit alternativen (Text abgebrochen)
1
2
3
4
5
…
151
152
153