API src

Found 939 results.

Related terms

Forschergruppe (FOR) 5095: Interaktionen von Schadstoffen, Antibiotikaresistenz und Pathogenen in einem sich ändernden Abwasserbewässerungssystem, Teilprojekt: Bedeutung von natürlichen Nanopartikeln und Kolloiden für die Mobilität und Bioverfügbarkeit von Antibiotika im Boden

Natürliche Kolloide, einschließlich Nanopartikel, sind in der Umwelt ubiquitär und wichtige Sorptionspartner für Arzneimittel wie Antibiotika. Es ist jedoch fast nichts darüber bekannt wie Abwasserbehandlung sowie Bodentyp die Prävalenz von Kolloiden und kolloidassoziierter Antibiotika modulieren. Auch Auswirkungen von Kolloiden auf die Bioverfügbarkeit von Antibiotika im Boden sind unklar. Wir stellen die Hypothese auf, dass i) große Teile der Antibiotika im Abwasser, im Boden und im Sickerwasser an Kolloide gebunden sind, und dass ii) eine Veränderung der Abwasserqualität sowie iii) verschiedene Bodentypen die Zusammensetzung der Kolloide sowie den Anteil der daran gebundenen Antibiotika verändern. Wir gehen davon aus, dass iv) die Bindung von Antibiotika an Kolloide deren Bioverfügbarkeit und die Selektion von Antibiotikaresistenzgenen verringert, während die Pflanzenaufnahme von Antibiotika nicht durch Abwasserbehandlung beeinflusst wird, da dadurch zwar geringere Gesamtkonzentrationen verglichen zum unbehandelten Abwasser erreicht werden, diese jedoch besser verfügbar sind. Um diese Hypothesen zu testen, werden wir i) Antibiotika in der kolloidalen und echt gelösten Phase von unbehandeltem Abwasser, Boden und Sickerwasser des Säulen- und Feldexperiments im Phaeozem analysieren. Um Veränderungen in der Kolloid-Antibiotika Assoziation aufzuklären, die ii) durch Veränderungen der Abwasserqualität und iii) des Bodentyps verursacht werden, werden wir Antibiotika in gelöster und kolloidaler Form in mit behandeltem und unbehandeltem Abwasser bewässerten Leptosolen und Vertisolen analysieren (Säulen- und Feldexperiment). Die Auswirkungen von iv) Kolloiden auf Bioverfügbarkeit und Selektion von Antibiotikaresistenzgenen, wird durch ein Satellitenexperiment zusammen mit SP 3 bewertet, in dem minimale Hemmkonzentrationen und Wachstumskurven für Bakterien in Lösungen in An- und Abwesenheit von Bodenkolloiden bestimmen werden. Um reale Böden mit unterschiedlichen Kolloidzusammensetzungen aus verschiedenen Bodentypen einzubeziehen, werden wir dort zusätzlich Antibiotikakonzentrationen sowie minimale selektive Konzentrationen unter Verwendung isogenresistenter und anfälliger Stämme in der echt gelösten und kolloidalen Fraktion des zentralen Inkubationsexperiments bestimmen. Die v) Pflanzenaufnahme von Antibiotika wird im zentralen Säulen- und Feldversuch quantifiziert. Zum besseren Verständnis der an der Antibiotikabindung beteiligten Kolloidphasen erfassen wir die kolloidale Größenverteilung sowie ihre Zusammensetzung mittels Feldflussfraktionierung für alle Abwasser- und Bodenproben. Die Verknüpfung der Informationen über Kolloid-Antibiotikum-Wechselwirkungen mit den Gesamtkonzentrationen (SP 2) und mikrobiologischen Parametern aus den anderen Teilprojekten liefert eine einmalige Chance, erstmalig ein tieferes Verständnis zu erhalten, welche Rolle Kolloide für die Mobilität und Bioverfügbarkeit von Antibiotika in Böden unter Abwasserbewässerung spielen.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.3: Entwicklung der biotechnologischen Filterkomponenten und der mikrobiellen Herstellungsprozesse der Enzyme

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.2: Entwicklung eines Hybridfilters

(Semi-) dezentrales Abwasserbehandlungssystem, TP1.6: Betriebswirtschaftliche Bewertung und Entwicklung innovativer Betreibermodelle

Demonstration umweltgerechter Ver- und Entsorgungssysteme auf ausgewählten Berg- und Schutzhütten am Beispiel der Göppinger Hütte auf 2.245 m ü. NN im Lechquellengebirge in Vorarlberg / Österreich^Förderung von Planungsleistungen für das geplante Projekt, Demonstration umweltgerechter Ver- und Entsorgungssysteme für ausgewählte Berg- und Schutzhütten am Beispiel der Göppinger Hütte im Lechquellengebirge in Vorarlberg, Österreich

Die Göppinger Hütte liegt auf 2245 m.ü.NN. in Österreich, Vorarlberg, im Karstgebiet. Das Trinkwasser für den Hüttenbetrieb wird aus einem Schneefeld bezogen, bzw. gegen Ende der Saison wird Regenwasser genutzt. Durch die Installation einer neuen UV-Anlage wird die Hütte mit hygienisch einwandfreiem Trinkwasser versorgt werden. Bisher traten in warmen Perioden Engpässe in der Wasserversorgung auf. Daraufhin stand zur Diskussion, ob der Speicherbehälter erweitert werden soll. Unter ökologischen Gesichtspunkten sollte allerdings zuerst der Hüttenbetrieb auf Einsparungsmaßnahmen untersucht werden. Im Küchenbereich wurde bereits bei den zurückliegenden Anschaffungen auf wassersparende Geräte Wert gelegt. Als größter Wasserverbraucher wurde die Toilettenanlagen mit 9 l Spülkästen festgestellt. Hier besteht das größte Einsparpotential. Durch die Installation von urinseparierenden Komposttoiletten und wasserlosen Urinalen soll dieses Potential voll ausgeschöpft werden. Der anfallende Urin wird als Teilstrom separat gesammelt und mittels Materialseilbahn zur unterhalb gelegenen Alpe transportiert und dort in eine Güllegrube gegeben. Dadurch wird eine einfachere Abwasserreinigung möglich und das Hüttenumfeld vor dem Eintrag von Nährstoffen geschützt. Das Abwasser wird derzeit in eine 2 Kammer-Grube geleitet und bei Vollfüllung ausgepumpt und der Schlamm im Hüttenumfeld verbracht. Durch die Änderungen im Sanitärbereich, verändert sich auch die Zusammensetzung des verbleibenden Abwassers. Bei Installation einer Komposttoilette muss lediglich der sogenannte Teilstrom Grauwasser gereinigt werden (26). Nach einem Variantenvergleich, der die speziellen Randbedingungen der Göppinger Hütte berücksichtigt hat, wurde als Vorzugsvariante eine mechanische Vorreinigung über eine Filtersackanlage mit einer anschließenden biologischen Reinigung in einem bewachsenen Bodenfilter gewählt. Das Küchenabwasser wird zusätzlich an einen Fettfang angeschlossen. Die Abwasserreinigungsanlage benötigt sehr wenig Energie (26) und ist gut in die Landschaft einzugliedern. Es werden durch diese Anlage mindestens die Grenzwerte für den biologischen Abbau der Extremlagen-Verordnung eingehalten. Durch diese Reinigung wird das ökologische Gleichgewicht der Umgebung der Hütte weitgehend entlastet . Durch einem gestiegenen Bedarf an Energie der Göppinger Hütte sowie durch die geplanten Anlagen (UV-Entkeimung und Abwasserreinigung) wird die Energieversorgung neu überplant. Derzeit existiert eine Photovoltaikanlage, über die auch die Materialseilbahn betrieben wird. Als Notstromversorgung dient ein Dieselaggregat. Der Gastraum wird über einen Kachelofen beheizt. Das erstellte Energiekonzept sieht in einem ersten Schritt eine verbesserte Wärmedämmung der Gaststube vor, ein wärmegedämmtes Warmwasserverteilnetz sowie den Ersatz einzelner Verbraucher durch energiesparende Einheiten. (Text gekürzt)

Einfluss von Temperaturbedingungen auf das Wachstum von Legionellenarten in komplexen biologischen Systemen der Abwasserbehandlung

Pathogene Legionellenarten, wie Legionella pneumophila, können die Legionärskrankheit, eine schwere Lungeninfektion mit einer Sterblichkeit von 5-10 %, verursachen. Sie werden durch das Einatmen von Legionellen-kontaminierten Aerosolen aus künstlichen Wassersystemen, wie zum Beispiel Kühltürme, Trinkwassernetzwerke und Kläranlagen, übertragen. Die Legionärskrankheit hat in Europa in der Zeit von 2015 bis 2019 um 65 % zugenommen. Es ist davon auszugehen, dass die Legionärskrankheitsfälle, die aus Kläranlagen entspringen, aufgrund der zunehmenden Wiederverwendung von Abwasser und wegen des Klimawandels weiter steigen werden. Das Letztere wird sich insbesondere auf die Abwassertemperaturen und die mikrobielle Zusammensetzung von Abwässern auswirken. Eine Lösung zur Verhinderung der Legionellenvermehrung in Kläranlagen mit warmen Abwassertemperaturen (>23 °C) steht mangels Grundlagenforschung nach unserem Kenntnisstand nicht zur Verfügung. Das Ziel dieses Antrages ist es, die Temperaturbedingungen zu definieren, die das Wachstum von pathogenen Legionella spp. aus Kläranlagen begünstigen, unter Berücksichtigung konstanter und dynamischer Temperaturverhältnisse. Dafür sollen Isolate aus behandeltem Abwasser oder Belebtschlamm von fünf verschiedenen Kläranlagen, die warme Abwässer behandeln, bei fünf verschiedenen Temperaturen zwischen 20 °C und 40 °C kultiviert werden. Um die Wirkung dynamischer Temperaturbedingung zu untersuchen, soll die Temperatur in der Mitte der exponentiellen Wachstumsphase um 5 °C innerhalb einer kurzen Zeitspanne erhöht werden. Die Wachstumsparameter der getesteten Legionellenarten sollen vor und nach der Störung verglichen werden. Aufgrund unserer Erfahrungen bei vergangenen Überwachungsprojekten von Legionella spp. in Kläranlagen wurde ein schneller Temperaturanstieg von 5 °C ausgewählt. Die isolierten Legionellenarten sollen anhand der Kultivierungsmethode aus der biologischen Behandlungsstufe gewonnen werden. Die Arten der Isolate und die Legionellendiversität in der biologischen Stufe soll durch eine gattungsspezifische Next-Generation-Sequencing identifiziert werden. Für das Temperaturexperiment werden Isolate ausgewählt, die sowohl die Kerngemeinschaft der Legionellen, die in allen fünf Kläranlagen vorhanden ist, als auch die einzigartigen Stammtypen, die nur in bestimmten Kläranlagen vorkommen, abdecken. Die Integration der Ergebnisse der Abwasser-/Kläranlagencharakterisierung, der Legionellendiversität und des temperaturabhängigen Wachstums von den Legionellenisolate wird unser Verständnis über die Rolle von Kläranlagen als ökologische Nische für das Legionellenwachstum verbessern. Unsere Erkenntnisse können verwendet werden, um die Überwachung von Legionellen in Kläranlagen zu verbessern und sie sollen die Entwicklung von Strategien zum Umgang mit plötzlichen Temperaturänderungen in Kläranlagen und Abwasserwiederverwendungsanlagen unterstützen.

Ein bio-elektrochemischer Sensorarray zur Detektion von Perfluoralkylsäuren (Deutsch-Israelische Wassertechnologie-Kooperation)

Veranlassung Es fehlen schnelle und vor allem feldtaugliche Methoden zur Detektion von PFAS in der Umwelt, um so zeitnah Maßnahmen zur Minderung von PFAS-Kontaminationen durchzuführen oder den Erfolg von Minderungsmaßnahmen zu beurteilen. Entsprechende Methoden können ebenso helfen, die Prozesssteuerung einer Abwasserbehandlung zur Entfernung von PFAS z. B. durch eine Aktivkohlebehandlung zu optimieren. Das Projekt PFASense hat sich zum Ziel gesetzt, eine solche Methode zu entwickeln. Hierzu werden Elektroden hergestellt, die a) entweder für eine spezifische Detektion perflourierter Verbindungen oberflächenmodifiziert sind und b) biologische Effekte, die durch perflourierte Verbindungen hervorgerufen werden können, mit mikrobiellen Bioreportern elektrochemisch erfassen. Mit den individuellen Signalen der einzelnen Elektroden wird eine KI trainiert und auf diese Weise ein Sensor-Array zur sensitiven Detektion der großen Stoffgruppe der perfluorierten Verbindungen in Umweltproben entwickelt. Ziele - a. Design und Herstellung von molekular geprägten Membranen zur Anreicherung spezifischer PFAS. - b. Design und Herstellung elektrochemischer, bakterieller Biosensoren zur Detektion biologischer Effekte, die durch PFAS hervorgerufen werden. - c. Design und Herstellung elektrochemischer, hefebasierter Biosensoren zur Detektion einer Veränderung der Thyroid-Signalkaskade durch PFAS. - d. Design und Herstellung eines intelligenten elektrochemischen Sensors für die direkte chemische Detektion von PFAS mittels KI-gestützter Datenauswertung. - e. Konstruktion eines mikrofluiden multi-Sensor-Arrays unter Nutzung der in a. bis d. entwickelten Komponenten. - f. Validierung und Eignungstestung des entwickelten Sensor-Arrays mittels Einzelsubstanzen, Substanzmischungen sowie dotierten und undotierten Realproben mit einem Fokus auf industriellen Abwässern. Ziel des Vorhabens ist die Entwicklung einer innovativen technologischen Lösung für die folgende Fragestellung: Wie kann man zeitnah Informationen über die Qualität von z. B. Abwässern erhalten, ohne auf verzögert zur Verfügung stehende, analytische Informationen aus einem Labor angewiesen zu sein? Dieser Bedarf an zeitnahen Informationen für eine Bewertung von Abwasser und Wasserproben kann perspektivisch mittels eines bio-elektrochemischen Sensorarrays gedeckt werden, der im Rahmen des Projekts für den Nachweis von Per- und Polyfluoralkylsubstanzen (PFAS) entwickelt wird. PFAS werden in zahlreichen Produkten verwendet, darunter wässrige filmbildende Schäume für die Brandbekämpfung, antihaftbeschichtetes Kochgeschirr, Lebensmittelverpackungen, wasserabweisende Stoffe, medizinische Geräte, Kunststoffe und Lederprodukte. PFAS werden jedoch mit verschiedenen, toxikologisch relevanten Effekten in Verbindung gebracht, wie mit veränderten Immun- und Schilddrüsenfunktionen, Leber- und Nierenerkrankungen, Lipid- und Insulinstörungen, Fortpflanzungs- und Entwicklungsstörungen oder auch der Krebsentstehung. Als unmittelbare Folge dieser Gesundheitsrisiken hat die Europäische Kommission einen Vorschlag zur Überarbeitung der Liste der prioritären Stoffe in Oberflächengewässern angenommen, unter denen 24 Verbindungen zur Gruppe der PFAS gehören.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.6: Charakterisierung und Evaluierung des neu entwickelten Adsorbermaterials

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.1: Optimierung des Adsorbermaterials für die Beschichtung mit Enzymen

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.7: Entwicklung von Adhäsionsvermittlerpeptiden mit Enzymfunktionalität zur Elimination von gelösten Stoffen

1 2 3 4 592 93 94