Pflanzen verfügen über vielfältige Mechanismen zum Schutz vor Pathogenbefall oder Umweltstress. Dabei weisen pflanzliche Abwehrsysteme Ähnlichkeiten zum angeborenen Immunsytem von Säugern auf, bei dem Stickoxid (NO) eine Schlüsselrolle spielt. Auch in Pflanzen finden sich wichtige Komponenten der durch NO induzierten Signalübertragung. NO aktiviert Abwehrgene und ist beteiligt an programmiertem Zelltod und an der Abwehr von Pathogenen. Das vorgeschlagene Projekt hat zum Ziel, die Signalübertragung durch NO in Tabak und Arabidopsis zu erforschen und die Rolle von NO bei der Abwehr von Pathogenen zu klären. (1) Ein Schwerpunkt soll in der Aufklärung der Signalübertragung durch NO und der Aktivierung von Abwehrgenen liegen. Es soll geklärt werden, ob NO als mobiles Signal dient, und ob andere Signalmoleküle (z.B. Salicylsäure) in die NO-Signalübertragung integriert sind. (2) Um die Bedeutung von NO für die Regulation von Abwehrmechanismen zu klären, sollen Expressionsprofil und Expressionsdynamik von NO-induzierten Genen durch DNA-ChipTechnologie analysiert werden. Diese neuartige Technik wird auch Aufschluss über eine etwaige Vernetzung der NO-Signalübertragung mit pflanzlichen Hormonsystemen liefern. Die Erforschung der Signalübertragung durch NO in Pflanzen kann unser Verständnis von Resistenzmechanismen vertiefen und zur Entwicklung pathogen-resistenter Pflanzen beitragen.
Es wird eine Methode entwickelt, welche den empfindlichen Nachweis durch UV und Roengenstrahlen induzierter Veraenderungen in der DNS ermoeglicht. Dazu werden in Kaninchen nach Injektionen bestrahlte DNS Antikoerper gebildet. Strahlenschaeden koennen mit ihrer Hilfe durch einen Radioimmunoverdraengungsassay in sehr geringen Mengen auch dort nachgewiesen werden, wo eine Markierung der DNS nicht moeglich ist.
Die Kenntnis artspezifischer Lockstoffe oder Abwehrstoffe ermoeglicht die Manipulation von Insektenpopulationen unter weitgehender Vermeidung der Anwendung von Bioziden; solche Substanzen koennen sowohl in den Insekten selbst als auch in ihren Wirtspflanzen vorkommen und koennen zur Chemotaxonomie dienen.
Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.
Mit einem Elektronen-Spin-Resonanz-Spektrometer konnten erstmalig in Wurzeln verschiedener Pflanzenarten freie Radikale und antioxidative Substanzen nachgewiesen werden. Diese Arbeiten werden mit dem Ziel fortgesetzt, die Wirkung anthropogener Stressoren auf die Induktion freier Radikale und deren Abwehr durch antioxidative Schutzsubstanzen aufzuklaeren.
Feinstruktur und Antigenitaet der virusinfizierten Zelle sollen zunaechst verplant und dann auch hinsichtlich folgender Parameter untersucht werden: Expression virusindizierter Antigene durch Immunofluoreszenz- und Immunelektronenmikroskopie; Auftreten von Aenderungen der Oberflaechenladung, der Verteilung von Membranpartikeln; Suche nach virusspezifischen Antikoerpern, nach RNS-tumorvirusspezifischen Antigenen beim Menschen.
Origin | Count |
---|---|
Bund | 134 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 133 |
Text | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 133 |
Language | Count |
---|---|
Deutsch | 133 |
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 124 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 60 |
Lebewesen & Lebensräume | 125 |
Luft | 51 |
Mensch & Umwelt | 134 |
Wasser | 48 |
Weitere | 120 |