Im Projekt erfolgt eine Langzeitbeobachtung des Eintrages von Nitrat, Nitrit und Ammonium in das sich unter landwirtschaftlichen Nutzflächen befindliche Grundwasser. Dazu werden im Landkreis Gifhorn seit 1989 ausgewählte Beregnungsbrunnen beprobt. Diese Erhebungen werden ergänzt durch eine Auswertung der beim Gesundheitsamt des Landkreises Gifhorn vorliegenden Daten zur Trinkwasserüberwachung. Herangezogen werden auch die Grundwasser-Überwachungsdaten aus den im Landkreis Gifhorn verbreitet anzutreffenden Trinkwasserschutzgebieten. Mit dem Projekt soll insbesondere der Fragestellung nachgegangen werden, in wieweit bei Böden mit hohem Nährstoffauswaschungspotential Stickstoffeinträge langfristig in immer tiefere Grundwasserbereiche verlagert werden. Da aus tieferen Grundwasserleitern in der Regel auch die öffentliche Trinkwasserversorgung gespeist wird, ist diese Fragestellung von besonderer Relevanz. Wegen des Vorhandenseins vielfach sandiger Böden in Kombination mit verbreitet intensiver Landwirtschaft und mit einer i.d.R. auf den landwirtschaftlichen Nutzflächen gegebenen Grundwasserneubildung, kann im Landkreis Gifhorn von einem insgesamt hohem Nährstoffauswaschungspotential ausgegangen werden. Das Untersuchungsgebiet Landkreis Gifhorn eignet sich daher gut als 'worst case'.
The structural polysaccharides cellulose and chitin of plants, fungi, and arthropods are major components of organic matter in agricultural soils. These biopolymers are carbon sources of soil microbial communities linked to soil redox processes. Soil aggregates of waterunsaturated soil form natural boundaries of oxic conditions outside and oxygen-limited conditions inside. These biogeochemical interfaces lead to a highly heterogeneous oxygen distribution on a millimetre scale. The effects and mechanisms of the toxicity of herbicides on biopolymer degrading communities in such highly compartmentalized soils have not been resolved. The proposed study is a continuation of a project funded within Priority Program 1315 'Biogeochemical Interfaces in Soil'. The preceding project resolved phylogenetic identities of known and novel prokaryotes linked to cellulose degradation under both oxic and anoxic conditions, and demonstrated that the acidic herbicides Bentazon and MCPA impair microbial processes involved in cellulose degradation. The proposed project will (I) identify chitin-degrading prokaryotes, fungi, and protists that are active in oxic and anoxic microzones, (II) determine the tolerance of various cellulolytic and chitinolytic taxa to Bentazon and MCPA, (III) characterize key chitin-degraders, and (IV) will quantitatively assess oxygen distribution in during biopolymer degradation in an agricultural soil. Central methods will include stable isotope probing, analyses of 16S rRNA, 18S rRNA, and chitinase genes, HPLC, GC, and oxygen sensing via analysis of fluorescence dyes.
Angesichts der durch steigende Kohlendioxid (CO2)- Konzentrationen bedingten Klimaerwärmung wird nach Möglichkeiten gesucht, CO2 unter anderem in terrestrischen Senken für längere Zeiträume festzulegen. Am Beispiel von Miscanthus x giganteus (Greef et Deu.) wurde untersucht, ob durch den Anbau von nachwachsenden Rohstoffen eine Kohlenstoff (C)- Festlegung in Böden unterschiedlicher Textur möglich ist. Zu diesem Zweck wird die Methode der natürlichen 13C-Abundanz angewandt. Mit dieser modernen Methode können C-Umsatzzeiten des Gesamtkohlenstoffs im Boden sowie seiner verschieden Pools abgeschätzt werden, aber auch die C-Dynamik auf molekularer Basis durch komponentenspezifische O13C Lipidanalysen untersucht werden. Die Untersuchungen zeigten, dass die unter Miscanthus ermittelten C-Verweilzeiten nur geringfügig länger sind als diejenigen unter Mais. Die jährliche Festlegung von miscanthusbürtigem C in der organischen Bodensubstanz (OBS) bestätigt nur für lehmigen Boden eine höhere C-Sequestrierung von Miscanthus. Es wurde eine vergleichbare C-Akkumulation durch den Miscanthusanbau wie in Grünlandböden festgestellt. Ebenso zeigen Inkubationsexperimente im Miscanthusboden eine ähnliche kumulative CO2-Freisetzung wie in Böden unter Grünland mit einer Tendenz zu geringfügig niedrigeren Freisetzungsraten im Miscanthusboden, Die Anteile von miscanthusbürtigem C am freigesetzten CO2 sind ähnlich wie in Versuchen mit Mais. Es lässt sich eine schnellere Umsetzung des miscanthusbürtigen C in der mikrobiellen Biomasse als leicht umsetzbarer C-Fraktion bestätigen. Die Zugabe leicht verfügbarer organischer Substanzen bewirkte eine verstärkte Mineralisierung der OBS, wobei dieser zusätzlich freigesetzte C entgegen den Erwartungen aus der alten, C3 bürtigen OBS Fraktion stammte. In 13C- Markierungsexperimenten konnte in Miscanthus, Mais, Weizen und Roggen die Verlagerung des kürzlich assimilierten CO2 in Pflanzenteilen verfolgt werden. Eine Verlagerung in den Boden fand hierbei kaum statt. Die O13C-Werte aus den komponentenspezifischen O13C- Lipidanalysen sind vielversprechend für die Diagnose von molekularen Markern und die daraus erfolgende Bestimmung der Umsatzraten. An den CO2- Konzentrationen der Bodenluft und der Herkunft des CO2 konnte der besondere Vegetationszyklus (später Wachstumsbeginn, verzögertes Wurzelwachstum) von Miscanthus wiedergespiegelt werden.
Das Projekt, Biogeochemie der Denitrifikation, von Pflanzen-Boden-Inkubationsstudien zur ökosystemaren biogeochemischen Modellierung, fokussiert auf die Entwicklung und Anwendung von Pflanzen Boden Inkubationskammern, basierend auf der Helium (He)Gasflusstechnik, zur Identifizierung und Charakterisierung der Bedeutung von Pflanze-Mikroorganismen-Interaktionen in der Rhizosphäre im Zusammenhang mit denitrifikatorischen Stickstoffumsetzungen und Gasbildung (NO, N2O, N2). Unsere zentrale Hypothese ist, dass pflanzliche Photosynthese und Denitrifikation in der Rhizosphäre eng gekoppelt abläuft, mit Wurzelexudation als bestimmender Faktor. Experimente werden mit 3 DASIM-Böden und zwei Pflanzenarten (Weidelgrass und Weizen) durchgeführt, wobei eine Anzahl verschiedener Umweltbedingungen (Temperatur, Bodenfeuchte), Pflanzenentwicklungsstufen und Atmosphärenzusammensetzungen getestet werden. In enger Kooperation mit den anderen Mitgliedern der Forschergruppe werden zudem die Dynamiken von Wurzelexudation sowie zentrale mikrobielle Umsetzungsprozesse erfasst, Stickstoffbilanzen erstellt und Methodenvergleiche durchgeführt. Die Resultaten der eigenen experimentellen Arbeiten sowie der der anderen involvierten Forschungsgruppenmitglieder werden für die Weiterentwicklung des Denitrifikations-.sowie des Bodenphysikmoduls des biogeochemischen Modells LandscapeDNDC genutzt.
Auch in aeroben Böden finden Denitrifikationsprozesse statt, aller Voraussicht nach in heterogen verteilten anoxischen Mikrobereichen. Lokal anaerobe Bedingungen sind dabei entweder das Ergebnis einer limitierten Sauerstoffnachlieferung oder von besonders hohem Sauerstoffverbrauch bei der mikrobiellen Zersetzung von leicht abbaubarer organischer Substanz. Die Dynamik des Stickstoffumsatzes wird durch ein Zusammenspiel von mikrobieller Aktivität und abiotischen Bedingungen gesteuert, die eng mit der Bodenstruktur zusammenhängen. Denitrifikation ist ein Mehrskalenprozess, bei dem die biogeochemischen Prozess in einzelnen Poren stattfinden, während die relevante Skala für den Transport von Sauerstoff und organischer Substanz Millimeter bis Dezimeter ist. Schließlich werden für Klimasimulationen die aggregierten Produktflüsse für Gebiete mit einer Fläche von mindestens einigen Quadratkilometern benötigt. Diese enorme Spanne von mindestens drei Skalen über mehr als 9 Größenordnungen soll in diesem Projekt durch Modellierung und numerische Simulation mit einer Hierarchie von drei verschiedenen Modellen überbrückt werden. Ein dreidimensionales porenskaliges Modell wird zur Simulation einzelner Aggregate verwendet, ein ebenfalls dreidimensionales kontinuumskaliges Modell zur Simulation von Experimenten in Boden-Mesokosmen und ein drittes, eindimensionales Modell zum Testen von Upscaling-Konzepten, die später Eingang in Simulationen für ganze Landschaften finden sollen. Die Modelle werden mit Batchexperimenten parametrisiert und durch Untersuchung ihrer Fähigkeit zur Prognose der zeitlichen Dynamik der Denitrifikation und der Stöchiometrie der Produkte für Experimente mit unterschiedlichen Materialien (von künstlichen porösen Medien bis zu ungestörten Böden) und Randbedingungen validiert. Die Hierarchie von Modellen wird dann verwendet um verbesserte effektive Modelle der Denitrifikation auf der Macroskala zu entwickeln. Die betrifft insbesondere die Bildung, Ausdehnung und Auswirkung anaerober Mikrozonen.
Extraction of metals from polluted agricultural soils by means of plants is in general limited either by low growth of hyper accumulating plants or low metal-uptake of plants with high biomass production. Moreover, metal-uptake is often much less efficient under field conditions than in pot experiments using the same soils. Rooting strategy was suspected as an important factor for the differences in metal uptake efficiency of different plants and under different conditions of soil structure and heterogeneity. In this project we compared the root growth and metal uptake of hyper accumulators with non- or low-accumulating plants, using agar, model soil and real soil systems.
<p>Die wichtigsten Fakten</p><p><ul><li>In den Jahren 2020 bis 2023 wurden täglich 51 Hektar für Siedlungs- und Verkehrszwecke neu in Anspruch genommen.</li><li>Der Anstieg sollte laut Bundesregierung ursprünglich bis 2020 auf 30 Hektar pro Tag sinken. Nach den Zielen der Deutschen Nachhaltigkeitsstrategie soll der tägliche Anstieg bis zum Jahr 2030 nun weniger als 30 Hektar betragen.</li><li>Das Integrierte Umweltprogramm des Bundesumweltministeriums benennt eine Senkung des täglichen Anstiegs auf 20 Hektar pro Tag bis 2030.</li><li>Es müssen zusätzliche Maßnahmen ergriffen werden, damit diese Ziele erreicht werden können.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Die Umwandlung von Ackerböden, Wald oder Grünland in Siedlungs- und Verkehrsfläche verursacht beträchtliche Umweltauswirkungen: Ein Großteil der Flächen wird mit Gebäuden oder Anlagen bebaut oder für Verkehrswege in Anspruch genommen. Dies zerstört die natürliche Bodenfruchtbarkeit und behindert eine zukünftige (Wieder-)Nutzung für die Land- und Forstwirtschaft. Versiegelte Flächen verlieren ihre Fähigkeit zur Regulierung des Mikroklimas und können im Sommer keinen Beitrag zur Milderung der Überhitzung in Städten leisten. Auch die Artenvielfalt wird beeinträchtigt, da durch die neuen Siedlungs- und Verkehrsflächen Landschaften zerschnitten und die Lebensräume kleiner werden.</p><p>Überdies erzeugen neu erschlossene Siedlungs- und Verkehrsflächen zusätzlichen Verkehr, der wiederum Lärm und Schadstoffbelastungen verursacht. Außerdem erhöht dies den Materialverbrauch für den Bau von Gebäuden und Erschließungsinfrastruktur. Neue Gebäude und Infrastrukturen müssen betrieben werden, dadurch steigt auch der Energieverbrauch.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Im „<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1573551946736&uri=CELEX%3A52011DC0571">Fahrplan für ein ressourceneffizientes Europa</a>“ der EU wird angestrebt, die Landnahme so zu reduzieren, dass bis 2050 netto kein Land mehr verbraucht wird (KOM/2011/0571). Die Ziele der <a href="https://www.bundesregierung.de/resource/blob/975274/2335292/c4471db32df421a65f13f9db3b5432ba/2025-02-17-dns-2025-data.pdf">Nationalen Nachhaltigkeitsstrategie</a> und des <a href="https://www.bmel.de/SharedDocs/Downloads/DE/_Landwirtschaft/Klimaschutz/Klimaschutzprogramm2030.html">Klimaschutzprogramm 2030</a> sehen spezifizierend vor, dass bis 2030 <strong>weniger</strong> als 30 Hektar pro Tag neu als Flächen für Siedlungs- und Verkehrszwecke ausgewiesen werden sollen. Das <a href="https://www.bmuv.de/themen/nachhaltigkeit/integriertes-umweltprogramm-2030">Integrierte Umweltprogramm 2030</a> des Bundesumweltministeriums nennt für das Jahr 2030 ein ambitionierteres Ziel von 20 Hektar pro Tag, da bei linearer Fortschreibung zum Erreichen des Netto-Null Ziels 2050 – wie es auch der <a href="https://www.bmwk.de/Redaktion/DE/Publikationen/Industrie/klimaschutzplan-2050.html">Klimaschutzplan 2050</a> vorsieht – dieser Wert erreicht werden sollte.</p><p>Im Zeitraum von 2020 bis 2023 nahm die Siedlungs- und Verkehrsfläche im Durchschnitt um 51 Hektar pro Tag zu. Seit dem Jahr 2000 hat sich die tägliche Zunahme der Siedlungs- und Verkehrsfläche etwa halbiert. Grund dafür waren geschärfte Regelungen im Bau- und Planungsrecht, größere Anstrengungen in den Ländern und Gemeinden, eine verhaltene konjunkturelle Entwicklung und der demografische Wandel. In den letzten Jahren stagniert die Entwicklung jedoch. Zwar kann immer noch das Ziel des Integrierten Umweltprogramms (20 Hektar pro Tag bis 2030) erreicht werden. Dies zu erreichen ist jedoch anspruchsvoll, und bedarf weiterer Maßnahmen.</p><p>Wie wird der Indikator berechnet?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> bildet die durchschnittliche Zunahme der Siedlungs- und Verkehrsfläche in Hektar pro Tag ab. Als Siedlungs- und Verkehrsfläche gelten Flächen für Wohnbau, Industrie und Gewerbe (ohne Abbauland), für öffentliche Einrichtungen, Flächen für Sport, Freizeit und Erholung (inkl. Friedhofsflächen) sowie Verkehrsflächen. Der Indikator wird jährlich vom Statistischen Bundesamt auf der Basis der von den Ländern berichteten Bodennutzungs-Daten berechnet. Diese unterliegen in vielen Fällen Sondereffekten und müssen vom Statistischen Bundesamt teilweise korrigiert werden. Weiterführende Erläuterungen dazu finden sich in der Publikation <a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Flaechennutzung/Methoden/anstieg-suv.pdf">Erläuterungen zum Indikator „Anstieg der Siedlungs- und Verkehrsfläche“</a> und für die spezifischen Revidierungen im Zuge der Veröffentlichungen in 2025 in <a href="https://www.destatis.de/DE/Presse/Pressemitteilungen/2025/08/PD25_286_412.html">Pressemitteilung Nr. 286 vom 5. August 2025</a> des Statistischen Bundesamtes.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel </strong><a href="https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/flaeche/siedlungs-verkehrsflaeche"><strong>„Siedlungs- und Verkehrsfläche“.</strong></a></p>
The aim of the MICROSOIL project was to identify meaningful endpoints for assessing the effects of plant protection products, veterinary pharmaceuticals and biocides on microorganisms in agricultural soils.The current risk assessment for plant protection products (PPPs) considers the effects of PPPs on nitrogen turnover by microorganisms in test soils according to the OECD 216 testguideline. However, this laboratory test does not cover all risks to microorganisms caused by PPPs. Within this project, five alternative methods to assess the effects of chemicals on the soil microbial community were identified, based on a literature review and a scoring system . To compare the sensitivity of these methods to chemicals, laboratory tests were carried out with three soils and six test substances, each.Based on the MICROSOIL results, it is recommended to add an additional test on bacterial function (ISO 20130, enzymatic activity) and a structural test on the effects on mycorrhizal fungi (ISO 10832) to the first tier risk assessment of chemicals. A fingerprinting method to assess the impact on community structure is also recommended but needs to be further elaborated.The results of this project also show that the current risk assessment for veterinary pharmaceuticals may not cover the development of antibiotic resistance in environmentally relevant soil bacteria.This project also investigated the degradation performance of microorganisms after multiple applications of chemicals. Multiple applications of the same substance as well as the presence of another substance in the soil had both positive and negative effects on the degradation rate of the test substances.The results presented here underline the need to update the risk assessment framework for soil organisms, exposed to chemicals and provide concrete suggestions for a new risk assessment scheme.
Messung bei pflanzlichen und tierischen Nahrungsmitteln, Futter- mitteln, Weiden und Ackerböden, Mülldeponien und Kläranlagen (Routinemeßprogramm)
| Origin | Count |
|---|---|
| Bund | 608 |
| Europa | 3 |
| Kommune | 10 |
| Land | 68 |
| Wissenschaft | 13 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 7 |
| Ereignis | 3 |
| Förderprogramm | 525 |
| Hochwertiger Datensatz | 2 |
| Taxon | 1 |
| Text | 62 |
| Umweltprüfung | 1 |
| unbekannt | 63 |
| License | Count |
|---|---|
| geschlossen | 96 |
| offen | 562 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 558 |
| Englisch | 211 |
| Resource type | Count |
|---|---|
| Archiv | 9 |
| Bild | 4 |
| Datei | 26 |
| Dokument | 37 |
| Keine | 390 |
| Multimedia | 1 |
| Unbekannt | 6 |
| Webdienst | 14 |
| Webseite | 230 |
| Topic | Count |
|---|---|
| Boden | 665 |
| Lebewesen und Lebensräume | 647 |
| Luft | 449 |
| Mensch und Umwelt | 662 |
| Wasser | 437 |
| Weitere | 646 |