API src

Found 447 results.

Erhöhung von Versorgungsicherheit, Anlagenperformance und Produktivität durch lebensdauerrelevante Untersuchungen der Stabilität der Modulverkapselung von PV-Modulen, Teilvorhaben: Entwicklung eines Industrie 4.0-Prozesses für PV-Lamination

Instandsetzungssysteme aus textilbewehrten Mörteln und Betonen für Verkehrswasserbauwerke

Das Ziel des Vorhabens ist es, das neue Instandsetzungssystem „Textilbewehrte Mörtel und Betone“ dahingehend weiter zu entwickeln, dass der Wasser- und Schifffahrtsverwaltung geeignete, ausschreibungsreife Lösungen für bestimmte Randbedingungen (freibewittert / Wasserwechselbereich; mit / ohne Spaltwasserdruckansatz etc.) zur Verfügung gestellt werden können. Aufgabenstellung und Ziel Die BAW hat in der Vergangenheit im Rahmen von zwei FuE-Vorhaben die Möglichkeit einer Instandsetzung von Wasserbauwerken mittels Vorsatzschalen aus textilbewehrtem Spritzmörtel und Spritzbeton eruiert (Westendarp et al. 2016). Die Vorteile dieser Systeme gegenüber den derzeit in ZTVW LB 219, Abschnitt 3 und 4 geregelten verankerten und bewehrten Vorsatzschalen aus Beton und Spritzbeton sind u. a. der Ersatz der korrosionsgefährdeten Bewehrung und die geringen Dicken. Gegenüber den in ZTV-W LB 219, Abschnitt 5 geregelten dünnschichtigen, unbewehrten Spritzmörteln und Spritzbetonen haben textilbewehrte Systeme den Vorteil einer gezielten Rissbreitensteuerung. In einem anschließenden FuE-Vorhaben (Rahimi 2022) wurde das BAWMerkblatt „Flächige Instandsetzung von Wasserbauwerken mit textilbewehrten Mörtel- und Betonschichten (MITEX)“ in Zusammenarbeit mit dem Institut für Bauforschung (ibac) der RWTH Aachen erarbeitet und veröffentlicht. In diesem Merkblatt werden die Anforderungen und Prüfungen für Schichten aus textilbewehrtem Spritzmörtel und -beton für die flächige Instandsetzung gerissener Wasserbauwerke beschrieben, die einer freien Bewitterung (kein Riss- und Spaltwasserdruck und mit Haftverbund) ausgesetzt sind. Des Weiteren wurde durch die Beteiligung am C³-Vorhaben Carbon Composite Concrete, Teilvorhaben V 4.9 „Regelwerksgerechte Instandsetzung von Wasserbauwerken mit C³“ in erster Linie ein Pflichtenheft und eine Datenanalyse über den Verbund und die Dauerhaftigkeit von derartigen Systemen im Verkehrswasserbau aufgestellt bzw. durchgeführt sowie die Projektpartner in ihren Aufgabenstellungen unterstützt. Das Ziel dieses Vorhabens ist es, das neue Instandsetzungssystem mit textilbewehrten Mörtel- und Betonschichten dahingehend weiterzuentwickeln, dass der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) geeignete, ausschreibungsreife Lösungen für bestimmte Randbedingungen (freibewittert/Wasserwechselbereich; mit/ ohne Risswasser- und Porenwasserdruck etc.) zur Verfügung gestellt werden können. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mit dem neuen Instandsetzungssystem aus textilbewehrten Mörteln oder Betonen und durch den Ersatz korrosionskritischer Bewehrung könnte der WSV ein Verfahren zur Verfügung gestellt werden, mit dessen Hilfe sich Instandsetzungen insbesondere an älteren massiven Wasserbauwerken zielsicherer und kostengünstiger als bislang realisieren ließen. Untersuchungsmethoden Folgende Aktivitäten werden durchgeführt: - weiterführende Aktivitäten mit dem Institut für Bauforschung Aachen (ibac) der RWTH Aachen: a) praktische Untersuchungen für das Lastszenario 2 (kein Haftverbund, konstruktive Verankerung, kein Risswasser- und Porenwasserdruck) b)theoretische und praktische Analysen zum Lastszenario 3 (kein Haftverbund, statische Verankerung, Risswasser- und Porenwasserdruck) - Planung und Durchführung einer Probeinstandsetzungsmaßnahme (Schleuse Anderten) - Bearbeitung der Fragestellungen zu Spaltwasserdruck, Ansatz Adhäsion, Temperatureinflüsse etc.

Physikalische Stabilisierung der organischen Substanz durch Entstehung hydrophober Grenzflächen auf Aggregaten und Primärpartikeln

Die Literatur der letzten Jahre weist immer stärker darauf hin, dass Böden mit Benetzungshemmungen weiter als bisher angenommen weltweit verbreitet sind. Bereits geringe Anteile von organischer Substanz (SOM) können dabei in erheblicher Weise die Benetzbarkeit von Aggregaten oder Primärpartikeln von gut benetzbaren Oberflächen bis hin zu extremer Wasserabweisung verändern. Allgemein wird angenommen, dass Hydrophobie über mehrere Mechanismen die Abbaubarkeit von organischer Substanz und damit deren Stabilität beeinflussen kann. Daher kann der Grad der Hydrophobie als ein Indikatior der biologischer Abbaubarkeit von SOM verwendet werden. Weiterhin haben Benetzungshemmungen einen erheblichen Einfluß auf physikalische Prozesse in Böden. Extreme Benetzungshemmung führt häufig zu starkem Oberflächenabfluß und Erosion oder zu schnellem Auswaschen oberflächlich eingetragener Stoffe aus der Wurzelzone. Kenntnisse über das Benetzungsverhalten von Böden sind ebenfalls dann von Bedeutung, wenn generell das gleichzeitige Auftreten sehr feuchter und sehr trockener Zonen im Boden analysiert werden soll. Entsprechende Feuchtegradienten führen zu einem sehr unterschiedlichen physikalisch-chemischen Milieu in den entsprechenden Feuchte- und Trockenzonen, die wahrscheinlich erheblichen Einfluß auf die mikrobiellen Prozesse im Boden haben. Das Vorhaben beeinhaltet drei wesentliche Ziele: Erstens soll die Benetzbarkeit von Aggregatoberflächen und von Primarpartikeln der Böden des Schwerpunktprogramms bestimmt werden. Mittels Messung des Kontaktwinkels, der Oberflächenenergien und der Oberflächenladung soll eine möglichst vollständige Kennzeichnung erfolgen. In einem zweiten Abschnitt sollen Untersuchungen der Bodenlösung erfolgen. Es ist beabsichtigt, die Oberflächenspannung zu messen sowie den Einfluß der Bodenlösung auf die Grenzflächeneigenschaften von Bodenpartikeln und Modelloberflächen, etwa Quarzglasoberflächen, zu erfassen. Schließlich sollen die Ergebnisse zu den Oberflächeneigenschaften gemeinsam mit den Resultaten anderer Projektteilnehmer kombiniert oder ergänzt werden

Schwerpunktprogramm (SPP) 2451: Lebende Materialien mit adaptiven Funktionen, Teilprojekt: Konstruktion lebender Aktoren aus fädigen Cyanobakterien

In diesem Projekt schlagen wir eine experimentelle und theoretische Zusammenarbeit vor, um lebende Aktuatoren aus gleitenden, fädigen Cyanobakterien zu entwickeln. Diese phototrophen Organismen spielen sowohl aktuell als auch historisch eine wichtige Rolle im Kohlenstoffkreislauf der Erde, da sie beispielsweise den atmosphärischen Sauerstoff und große Teile unserer fossilen Brennstoffe erzeugten. Filamente bestehen aus vielen linear verketteten Zellen. Sie haben einen Durchmesser von nur wenigen Mikrometern, können aber bis zu einigen Millimetern lang werden. In Kontakt mit festen Oberflächen oder anderen Fäden gleiten sie entlang ihrer Kontur und reagieren auf Lichtgradienten durch Richtungsumkehr. Die zu Grunde liegenden Mechanismen sind noch nicht vollständig geklärt. In natürlichen Lebensräumen führt diese Bewegung zur Aggregation in dichte Kolonien, die sich je nach Umgebungsbedingungen zusammenziehen oder wieder zerstreuen können, was eine kollektive Akklimatisierung ermöglicht. Wir werden diese Eigenschaften nutzen, um anpassungsfähige lebende Aktuatoren zu entwickeln, d. h. ein Material, das durch Stimulation mit Licht seine Form verändern kann. Die Bakterien werden in eine Matrix eingebettet, typischerweise ein gel- oder faserbasiertes Material mit maßgeschneiderten Eigenschaften und Strukturen, die im Projekt entwickelt werden. Indem wir die Bakterien mit Hilfe von Lichtmustern steuern und ausrichten, wollen wir ein aktives Netzwerk im Gerüst aufbauen, das sich bei Stimulation zusammenziehen kann. Die Kräfte aus dem aktiven Netzwerk werden entweder durch Adhäsion oder mechanische Verzahnung zwischen aktiven und passiven Komponenten übertragen. Durch die Abstimmung der gegenseitigen Ausrichtung von aktiven und passiven Netzen und ihrer Anisotropie wollen wir eine Kontrolle der Deformation erreichen. Auf langen Zeitskalen wird das Material adaptiv sein, da langfristige einwirkende Lichtmuster eine topologische Neuordnung des aktiven Netzes bewirken, so dass zwischen verschiedenen Aktuationsmodi gewechselt werden kann. Die Entwicklung von Manipulationsstrategien, die in der Lage sind, mechanische Arbeit zu extrahieren, erfordert Kenntniss der raum-zeitlichen Organisation der Krafterzeugung einzelner Filamente und ihrer Ensembles, welche bisher nicht verfügbar ist und in diesem Projekt gewonnen werden soll. Im Gegensatz zu den meisten bisher untersuchten lebenden Aktuatoren basiert unser System auf langen, flexiblen und beweglichen polymeren Bestandteilen, die äußerst robust und von Natur aus durch Licht stimulierbar sind: Die Fasernatur der lebenden Bestandteile ermöglicht es, stark verflochtene Netzwerke zu schaffen, die in einem breiten Spektrum von Umgebungsbedingungen bestehen können. Ihre Beweglichkeit und Reaktionsfähigkeit ermöglicht es, das Netzwerk selbst zu aktivieren, ohne dass die lebenden Bestandteile aufwendig modifiziert werden müssen.

Automatisierte Fouling-Entfernung von Schiffsrümpfen mittels Laserstrahlung unter Wasser, Vorhaben: Konzeptionierung eines Unterwasser Simulationsprüfstandes sowie einer Funktionsbeschichtung zur laserbasierten Bewuchsreinigung

Qualitätssicherung von Asphaltkomponenten für dauerhafte Asphaltbefestigungen in tropischen Ländern, Qualitätssicherung von Asphaltkomponenten für dauerhafte Asphaltbefestigungen in tropischen Ländern

Grundlagenforschung zur Ausnutzung hydrodynamischer Effekte zur Verringerung des Membranfoulings durch die Einführung spezieller Anordnungen neuartiger Feed-Spacer-Geometrien in Kombination mit unregelmäßigen Membranoberflächenmustern

Umkehrosmose- (UO) und Nanofiltrationsmembranen (NF) sind bekannt für ihre hohe Selektivität gegenüber gelösten Stoffen und neu auftretenden Schadstoffen, die in verschiedenen Wassertypen vorhanden sind. Elemente mit spiralförmig gewickelten Membranen sind die am häufigsten verwendete Membrankonfiguration in UO/NF-Anlagen. Sie bestehen aus mehreren Taschen aus Dünnschichtverbundmembranen (TFC), einem Permeatrohr sowie Spacer (Abstandshalter) für Permeat (Produkt) und Feed (Zulauf). Feed-Spacer bilden einen Strömungskanal zwischen zwei benachbarten Taschen. Sie spielen eine wesentliche Rolle für die Flüssigkeitscharakteristika innerhalb der Feed-Strömungskanäle und folglich bei der Beeinflussung der Querströmungsgeschwindigkeit und des Druckabfalls. Dies beeinflusst Membranverschmutzung (Fouling) und Energieverbrauch und damit die Betriebskosten. Feed-Spacer sind vorteilhaft, um den Massentransport, die Fluidmischung und die Scherrate zu verbessern, was die Konzentrationspolarisation (Ansammlung zurückgehaltener Stoffe in einer Grenzschicht nahe der Membranoberfläche) und das Scaling (Überschreiten des Löslichkeitsgleichgewichts von Salzen) mildern sollte. Es wird jedoch auch beobachtet, dass Spacer zu Zonen mit schlechtem Massentransport führen, in denen dann partikuläres Fouling und Biofouling verstärkt auftreten. Die Nutzung von synergetischen Einflüssen einer Oberflächen-Mikrostrukturierung der Membran (regelmäßiges Muster im Mikro- oder Nanometerbereich auf der aktiven Seite) sowie des Designs und der Ausrichtung der FeedSpacer kann potenziell eine Flüssigkeitsmischung fördern und den Massentransport durch eine erhöhte Scherrate an der Membranoberfläche und in den Feed-Spacer-Strukturen verbessern. Dies mildert die Adhäsion von Partikeln und Biofouling erheblich, reduziert die Konzentrationspolarisation und erhöht somit den durchschnittlichen Permeatfluss und den für das Einsetzen von Fouling kritischen Fluss. Bisher wurden das Partikelablagerungsverhalten und die Neigung zu Biofouling in mit Spacern gefüllten Kanälen oberflächenstrukturierter TFC-Membranen weder in theoretischen (Simulation) noch experimentellen Studien untersucht. Das vorgeschlagene Forschungsprojekt soll das Verständnis grundlegender Design- und Betriebsaspekte im Hinblick auf neue und innovative Entwicklungsansätze fördern. Basierend auf experimentell ermittelten räumlichen Verteilungen von Partikeln und Biofoulants in Feed-Spacern soll die Topographie der Membranoberfläche an die Geometrie der Feed-Spacer angepasst und spezifisch gestaltet werden. Dies führt zu einer neuen Generation maßgeschneiderter Membrantaschen, die verbesserte Trennleistung und Antifouling-Eigenschaften aufweisen. Dieses neue Entwicklungskonzept wird eine Erhöhung der Prozesseffizienz und der Modullebensdauer sowie eine Verringerung des Energieverbrauchs bewirken und damit nachhaltigere und kostengünstigere Wasserreinigungsprozesse ermöglichen.

From architecture to function: Elucidating the formation and structure of soil microaggregates - a key to understand organic carbon turnover in soils? - Archfunk; Elucidating the role of surface topography and properties for the formation and stability of soil nano- and micro-aggregates by atomic force microscopy

Formation and stability of soil micro-aggregates depend on the forces which are acting between the individual building blocks and in consequence on type, size and properties of the respective adjacent surfaces. While the interaction forces are the result of the superposition of short-range chemical forces and long-range van-der-Waals, electrostatic, magnetic dipole and capillary forces, the total contact surface is a function of the size, primary shape, roughness and larger-scale irregularities. By employ-ing atomic force microscopy (AFM), we will explore the role of topography, adhesion, elasticity and hardness for the formation of soil micro-aggregates and their stability against external stress. Special consideration will be put on the role of extracellular polymeric substances as glue between mineral particles and as a substance causing significant surface alteration. The objectives are to (i) identify and quantify the surface properties which control the stability of aggregates, (ii) to explain their for-mation and stability by the analysis of the interaction forces and contacting surface topography, and (iii) to link these results to the chemical information obtained by the bundle partners. Due to the spatial resolution available by AFM, we will provide information on the nano- to the (sub-)micron scale on tip-surface interactions as well as 'chemical' forces employing functionalized tips. Our mapping strategy is based on a hierarchic image acquisition approach which comprises the analysis of regions-of-interest of progressively smaller scales. Using classical and spatial statistics, the surface properties will be evaluated and the spatial patterns will be achieved. Spatial correlation will be used to match the AFM data with the chemical data obtained by the consortium. Upscaling is intended based on mathe-matical coarse graining approaches.

Innovative Plasmatechnologie für haftungs- und eigenschaftsoptimierten Zweikomponentenspritzguss biobasierter und nachhaltiger Kunststoffe, KMUi-BÖ08: Plasma4Bio2K - Innovative Plasmatechnologie für haftungs- und eigenschaftsoptimierten Zweikomponentenspritzguss biobasierter und nachhaltiger Kunststoffe

Abbau von Arzneimittelrückständen in Abwässern durch autarke, biohybride Filtersysteme, Teilvorhaben: Lasermodifikation von Oberflächen zur Adhäsion und Versorgung spezifischer Filterorganismen sowie zum Abtransport von Metaboliten

1 2 3 4 543 44 45