Das Ziel des Vorhabens ist es, das neue Instandsetzungssystem „Textilbewehrte Mörtel und Betone“ dahingehend weiter zu entwickeln, dass der Wasser- und Schifffahrtsverwaltung geeignete, ausschreibungsreife Lösungen für bestimmte Randbedingungen (freibewittert / Wasserwechselbereich; mit / ohne Spaltwasserdruckansatz etc.) zur Verfügung gestellt werden können.
Aufgabenstellung und Ziel
Die BAW hat in der Vergangenheit im Rahmen von zwei FuE-Vorhaben die Möglichkeit einer Instandsetzung von Wasserbauwerken mittels Vorsatzschalen aus textilbewehrtem Spritzmörtel und Spritzbeton eruiert (Westendarp et al. 2016). Die Vorteile dieser Systeme gegenüber den derzeit in ZTVW LB 219, Abschnitt 3 und 4 geregelten verankerten und bewehrten Vorsatzschalen aus Beton und Spritzbeton sind u. a. der Ersatz der korrosionsgefährdeten Bewehrung und die geringen Dicken. Gegenüber den in ZTV-W LB 219, Abschnitt 5 geregelten dünnschichtigen, unbewehrten Spritzmörteln und Spritzbetonen haben textilbewehrte Systeme den Vorteil einer gezielten Rissbreitensteuerung. In einem anschließenden FuE-Vorhaben (Rahimi 2022) wurde das BAWMerkblatt „Flächige Instandsetzung von Wasserbauwerken mit textilbewehrten Mörtel- und Betonschichten (MITEX)“ in Zusammenarbeit mit dem Institut für Bauforschung (ibac) der RWTH Aachen erarbeitet und veröffentlicht. In diesem Merkblatt werden die Anforderungen und Prüfungen für Schichten aus textilbewehrtem Spritzmörtel und -beton für die flächige Instandsetzung gerissener Wasserbauwerke beschrieben, die einer freien Bewitterung (kein Riss- und Spaltwasserdruck und mit Haftverbund) ausgesetzt sind. Des Weiteren wurde durch die Beteiligung am C³-Vorhaben Carbon Composite Concrete, Teilvorhaben V 4.9 „Regelwerksgerechte Instandsetzung von Wasserbauwerken mit C³“ in erster Linie ein Pflichtenheft und eine Datenanalyse über den Verbund und die Dauerhaftigkeit von derartigen Systemen im Verkehrswasserbau aufgestellt bzw. durchgeführt sowie die Projektpartner in ihren Aufgabenstellungen unterstützt. Das Ziel dieses Vorhabens ist es, das neue Instandsetzungssystem mit textilbewehrten Mörtel- und Betonschichten dahingehend weiterzuentwickeln, dass der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) geeignete, ausschreibungsreife Lösungen für bestimmte Randbedingungen (freibewittert/Wasserwechselbereich; mit/ ohne Risswasser- und Porenwasserdruck etc.) zur Verfügung gestellt werden können.
Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)
Mit dem neuen Instandsetzungssystem aus textilbewehrten Mörteln oder Betonen und durch den Ersatz korrosionskritischer Bewehrung könnte der WSV ein Verfahren zur Verfügung gestellt werden, mit dessen Hilfe sich Instandsetzungen insbesondere an älteren massiven Wasserbauwerken zielsicherer und kostengünstiger als bislang realisieren ließen.
Untersuchungsmethoden Folgende Aktivitäten werden durchgeführt:
- weiterführende Aktivitäten mit dem Institut für Bauforschung Aachen (ibac) der RWTH Aachen:
a) praktische Untersuchungen für das Lastszenario 2 (kein Haftverbund, konstruktive Verankerung, kein Risswasser- und Porenwasserdruck)
b)theoretische und praktische Analysen zum Lastszenario 3 (kein Haftverbund, statische Verankerung, Risswasser- und Porenwasserdruck)
- Planung und Durchführung einer Probeinstandsetzungsmaßnahme (Schleuse Anderten)
- Bearbeitung der Fragestellungen zu Spaltwasserdruck, Ansatz Adhäsion, Temperatureinflüsse etc.
Die Literatur der letzten Jahre weist immer stärker darauf hin, dass Böden mit Benetzungshemmungen weiter als bisher angenommen weltweit verbreitet sind. Bereits geringe Anteile von organischer Substanz (SOM) können dabei in erheblicher Weise die Benetzbarkeit von Aggregaten oder Primärpartikeln von gut benetzbaren Oberflächen bis hin zu extremer Wasserabweisung verändern. Allgemein wird angenommen, dass Hydrophobie über mehrere Mechanismen die Abbaubarkeit von organischer Substanz und damit deren Stabilität beeinflussen kann. Daher kann der Grad der Hydrophobie als ein Indikatior der biologischer Abbaubarkeit von SOM verwendet werden. Weiterhin haben Benetzungshemmungen einen erheblichen Einfluß auf physikalische Prozesse in Böden. Extreme Benetzungshemmung führt häufig zu starkem Oberflächenabfluß und Erosion oder zu schnellem Auswaschen oberflächlich eingetragener Stoffe aus der Wurzelzone. Kenntnisse über das Benetzungsverhalten von Böden sind ebenfalls dann von Bedeutung, wenn generell das gleichzeitige Auftreten sehr feuchter und sehr trockener Zonen im Boden analysiert werden soll. Entsprechende Feuchtegradienten führen zu einem sehr unterschiedlichen physikalisch-chemischen Milieu in den entsprechenden Feuchte- und Trockenzonen, die wahrscheinlich erheblichen Einfluß auf die mikrobiellen Prozesse im Boden haben. Das Vorhaben beeinhaltet drei wesentliche Ziele: Erstens soll die Benetzbarkeit von Aggregatoberflächen und von Primarpartikeln der Böden des Schwerpunktprogramms bestimmt werden. Mittels Messung des Kontaktwinkels, der Oberflächenenergien und der Oberflächenladung soll eine möglichst vollständige Kennzeichnung erfolgen. In einem zweiten Abschnitt sollen Untersuchungen der Bodenlösung erfolgen. Es ist beabsichtigt, die Oberflächenspannung zu messen sowie den Einfluß der Bodenlösung auf die Grenzflächeneigenschaften von Bodenpartikeln und Modelloberflächen, etwa Quarzglasoberflächen, zu erfassen. Schließlich sollen die Ergebnisse zu den Oberflächeneigenschaften gemeinsam mit den Resultaten anderer Projektteilnehmer kombiniert oder ergänzt werden
In diesem Projekt schlagen wir eine experimentelle und theoretische Zusammenarbeit vor, um lebende Aktuatoren aus gleitenden, fädigen Cyanobakterien zu entwickeln. Diese phototrophen Organismen spielen sowohl aktuell als auch historisch eine wichtige Rolle im Kohlenstoffkreislauf der Erde, da sie beispielsweise den atmosphärischen Sauerstoff und große Teile unserer fossilen Brennstoffe erzeugten. Filamente bestehen aus vielen linear verketteten Zellen. Sie haben einen Durchmesser von nur wenigen Mikrometern, können aber bis zu einigen Millimetern lang werden. In Kontakt mit festen Oberflächen oder anderen Fäden gleiten sie entlang ihrer Kontur und reagieren auf Lichtgradienten durch Richtungsumkehr. Die zu Grunde liegenden Mechanismen sind noch nicht vollständig geklärt. In natürlichen Lebensräumen führt diese Bewegung zur Aggregation in dichte Kolonien, die sich je nach Umgebungsbedingungen zusammenziehen oder wieder zerstreuen können, was eine kollektive Akklimatisierung ermöglicht. Wir werden diese Eigenschaften nutzen, um anpassungsfähige lebende Aktuatoren zu entwickeln, d. h. ein Material, das durch Stimulation mit Licht seine Form verändern kann. Die Bakterien werden in eine Matrix eingebettet, typischerweise ein gel- oder faserbasiertes Material mit maßgeschneiderten Eigenschaften und Strukturen, die im Projekt entwickelt werden. Indem wir die Bakterien mit Hilfe von Lichtmustern steuern und ausrichten, wollen wir ein aktives Netzwerk im Gerüst aufbauen, das sich bei Stimulation zusammenziehen kann. Die Kräfte aus dem aktiven Netzwerk werden entweder durch Adhäsion oder mechanische Verzahnung zwischen aktiven und passiven Komponenten übertragen. Durch die Abstimmung der gegenseitigen Ausrichtung von aktiven und passiven Netzen und ihrer Anisotropie wollen wir eine Kontrolle der Deformation erreichen. Auf langen Zeitskalen wird das Material adaptiv sein, da langfristige einwirkende Lichtmuster eine topologische Neuordnung des aktiven Netzes bewirken, so dass zwischen verschiedenen Aktuationsmodi gewechselt werden kann. Die Entwicklung von Manipulationsstrategien, die in der Lage sind, mechanische Arbeit zu extrahieren, erfordert Kenntniss der raum-zeitlichen Organisation der Krafterzeugung einzelner Filamente und ihrer Ensembles, welche bisher nicht verfügbar ist und in diesem Projekt gewonnen werden soll. Im Gegensatz zu den meisten bisher untersuchten lebenden Aktuatoren basiert unser System auf langen, flexiblen und beweglichen polymeren Bestandteilen, die äußerst robust und von Natur aus durch Licht stimulierbar sind: Die Fasernatur der lebenden Bestandteile ermöglicht es, stark verflochtene Netzwerke zu schaffen, die in einem breiten Spektrum von Umgebungsbedingungen bestehen können. Ihre Beweglichkeit und Reaktionsfähigkeit ermöglicht es, das Netzwerk selbst zu aktivieren, ohne dass die lebenden Bestandteile aufwendig modifiziert werden müssen.