API src

Found 624 results.

Related terms

Entwicklung Terrestrischer Modellökosysteme: Neue Möglichkeiten zum Einsatz als Standardtestverfahren in der Abschätzung des Risikos von Pflanzenschutzmitteln auf Bodenorganismen

Die gegenwärtigen europäischen Vorschriften zur Zulassung von Pflanzenschutzmitteln sehen auf der ersten Stufe Einzelartentests unter Laborbedingungen vor. Sie sollen worst-case Szenarien der Exposition abbilden und können keinen Aufschluß über die vielfältigen Wechselbeziehungen sowie über Änderungen im strukturellen Gefüge der Bodenorganismen verschiedener trophischer Ebenen geben. Höherstufige Testverfahren sind mit Ausnahme des funktionellen Streubeuteltests nicht standardisiert. Nur großangelegte und damit kostenintensive Feldstudien liefern strukturelle Endpunkte und können zur adäquaten Beschreibung der komplexen Wirkzusammenhänge in der heterogenen Bodenmatrix beitragen. In der aktuellen Diskussion um die Revision der bestehenden EU-Richtlinien zeichnet sich ab, daß künftig zunehmend strukturelle Endpunkte, auch auf dem Niveau des Halbfreilandes, einbezogen werden sollen, um eine realitätsnahe Bewertungsgrundlage zu bilden. Im Kontext der bestehenden internationalen Leitlinien ist am Institut für Umweltforschung ein TME-System entwickelt worden, das unter natürlichen Witterungsbedingungen und über einen Zeitraum von bis zu einem Jahr artenreiche Gemeinschaften von Bodenorganismen weitgehend in ihrer ursprünglichen Zusammensetzung beherbergen kann. Im Mittelpunkt stehen dabei vier der abundantesten Gruppen der Meso- und Mikrofauna: Collembolen, Oribatiden, Enchytraeen und Nematoden. Diese Systeme sollen ausreichend empfindlich reagieren, um Effekte auf der Ebene von Organismengemeinschaften oder Populationen statistisch nachzuweisen. Umfangreiche Vorstudien befassen sich mit der Variabilität im Boden und der Stabilität der Biozönosen in TMEs, um das Design von Effektstudien den speziellen Gegebenheiten von Wiesenökosystemen anzupassen. Die TMEs bestehen aus großen, intakten und ungestörten Bodenkernen mit einer Höhe von 40 Zentimetern und einem Durchmesser von bis zu 47 Zentimetern. Sie werden unter natürlichen Witterungsbedingungen betrieben, bieten aber die Möglichkeit bei langandauernden Extremverhältnissen (vor allem Dürre) steuernd einzugreifen. Um möglichst empfindliche und diverse Lebensgemeinschaften vorzufinden, wurden die Bodenkerne nicht einem Agrarökosystem entnommen, sondern einer regelmäßig gemähten Wiese, die über Jahrzehnte nicht mit Pflanzenschutzmitteln behandelt worden sind. In Vorstudien im Freiland konnte gezeigt werden, daß die geklumpte Verteilung der Organismen über die Entnahmefläche Anpassungen bei der Gewinnung der Bodenkerne erfordert, welche die Variabilität in nachfolgenden Versuchen senken können. Nach dem Stechen der Bodenkerne werden die TMEs in die Versuchsanlage der RWTH Aachen transportiert, welche eine ausreichende Drainage in Verbindung mit einer intakten Wasserspannung gewährleisten soll, um sowohl Staunässe als auch ein Austrocknen der Kerne zu verhindern. U.s.w.

Verfahrensentwicklung zur selektiven Fluoridabtrennung aus industriellen Prozesswässern

Erprobung und Entwicklung einer Adsorberwand im Abstrom unterirdischer Kontaminationsbereiche in einer Kombination von Dekontaminierungs-Sicherungs- und Ueberwachungsmassnahmen

H2Giga: HTEL-Module - Ready for Gigawatt, Teilvorhaben: Entwicklung der Abscheidung von Kontaminanten aus Feedmedien der Hochtemperatur-Elektrolyse - SilEx

PaWAC: Entwicklung neuer Adsorbentien aus organischen Reststoffen für die Behandlung von Abwasser insbesondere für die Entfernung organischer Spurenstoffe (Deutsch-Israelische Wassertechnologie-Kooperation)

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Chemiewerk Bad Köstritz GmbH Bundesland: Thüringen Laufzeit: seit 2019 Status: Laufend

Modellvorhaben gasbetriebene Nutzfahrzeuge

Entwicklung eines Verfahrens zur Umwandlung von Ammonium aus Gärrest in Nitrat und die Weiternutzung als Sauerstoff-Donator für eine biologisch oxidative Biogas-Entschwefelung

Hauptbestandteil des Biogases ist das energetisch nutzbare Methan (CH4). Biogas enthält neben CH4 jedoch auch signifikante Mengen Kohlenstoffdioxid (CO2) und weitere Begleitgase. Problematisch ist dabei Schwefelwasserstoff (H2S), welcher vermehrt bei der Um-setzung von proteinhaltigem Substrat in H2S Konzentrationen von 200 bis 5.000 ppm (0,02 bis 0,5 Vol.-%) gebildet wird. Um den Methananteil des Biogases wirtschaftlich zur Energieerzeugung nutzen zu können, muss das Biogas somit zuvor entschwefelt werden. In der Biogasentschwefelung werden physikalische, chemische sowie biologische Verfahren angewandt. Durch den Verbrauch von Fäll- und Adsorptionsmitteln sind die chemischen und physikalischen Verfahren jedoch meist mit hohen Betriebskosten verbunden. Die biologischen Verfahren hingegen basieren auf mikrobiologische aerobe Atmungsprozesse, die meistens durch einen Lufteintrag in den Biogasstrom erfolgen. Sollte das Biogas anschließend auf Erdgasqualität aufbereitet werden, sind Restmengen an Stickstoff und Sauerstoff nur durch energetisch aufwändige Verfahren oder durch hohen Betriebsmittelverbrauch zu entfernen. Alternativ lässt sich Nitrat anstelle von Sauerstoff als Oxidationsquelle nutzen. Nitrat kann aus dem im Gärrest enthaltenen Ammonium produziert werden. Da Nitrat als Sauerstoffdonor bei der mikrobiologischen Biogasentschwefelung verwendet und dieser im Gärrest produziert werden kann, wird im Rahmen des angestrebten Vorhabens ein innovatives Verfahren - Das Nitro-SX Verfahren - untersucht, mit welchem kostengünstig und umweltschonend Schwefelwasserstoff mithilfe von nitrifizierten Gärrest aus dem Biogas entfernt wird. Das entstehende Nitrat wird zusammen mit dem Schwefelwasserstoff mikrobiologisch zu Sulfat oder Schwefel und Stickstoff verstoffwechselt. Somit kann dieses Verfahren ebenfalls zur Reduzierung des Nitrateintrages beitragen. Als Produkte des Verfahrens würden zum einen entschwefeltes Biogas, zum anderen ein nitratarmer Gärrest entstehen.

Entwicklung eines Verfahrens zur Umwandlung von Ammonium aus Gärrest in Nitrat und die Weiternutzung als Sauerstoff-Donator für eine biologisch oxidative Biogas-Entschwefelung, Teilvorhaben 2: Vor-, Entwurfs-, und Ausführungsplanung sowie Vorbereitung der Bau- und Umweltgenehmigung

Hauptbestandteil des Biogases ist das energetisch nutzbare Methan (CH4). Biogas enthält neben CH4 jedoch auch signifikante Mengen Kohlenstoffdioxid (CO2) und weitere Begleitgase. Problematisch ist dabei Schwefelwasserstoff (H2S), welcher vermehrt bei der Umsetzung von proteinhaltigem Substrat in H2S Konzentrationen von 200 bis 5.000 ppm (0,02 bis 0,5 Vol.-%) gebildet wird. Um den Methananteil des Biogases wirtschaftlich zur Energieerzeugung nutzen zu können, muss das Biogas somit zuvor entschwefelt werden. In der Biogasentschwefelung werden physikalische, chemische sowie biologische Verfahren angewandt. Durch den Verbrauch von Fäll- und Adsorptionsmitteln sind die chemischen und physikalischen Verfahren jedoch meist mit hohen Betriebskosten verbunden. Die biologischen Verfahren hingegen basieren auf mikrobiologische aerobe Atmungsprozesse, die meistens durch einen Lufteintrag in den Biogasstrom erfolgen. Sollte das Biogas an-schließend auf Erdgasqualität aufbereitet werden, sind Restmengen an Stickstoff und Sauerstoff nur durch energetisch aufwändige Verfahren oder durch hohen Betriebsmittelverbrauch zu entfernen. Alternativ lässt sich Nitrat anstelle von Sauerstoff als Oxidationsquelle nutzen. Nitrat kann aus dem im Gärrest enthaltenen Ammonium produziert werden. Da Nitrat als Sauerstoffdonor bei der mikrobiologischen Biogasentschwefelung verwendet und dieser im Gärrest produziert werden kann, wird im Rahmen des angestrebten Vorhabens ein innovatives Verfahren - Das Nitro-SX Verfahren - untersucht, mit welchem kostengünstig und um-weltschonend Schwefelwasserstoff mithilfe von nitrifizierten Gärrest aus dem Biogas entfernt wird. Das entstehende Nitrat wird zusammen mit dem Schwefelwasserstoff mikrobiologisch zu Sulfat oder Schwefel und Stickstoff verstoffwechselt. Somit kann dieses Verfahren ebenfalls zur Reduzierung des Nitrateintrages beitragen. Als Produkte des Verfahrens würden zum einen entschwefeltes Biogas, zum anderen ein nitratarmer Gärrest entstehen.

Entwicklung eines Verfahrens zur Umwandlung von Ammonium aus Gärrest in Nitrat und die Weiternutzung als Sauerstoff-Donator für eine biologisch oxidative Biogas-Entschwefelung, Teilvorhaben 1: Konzeptionierung, Entwurf und Untersuchung einer Gärrest-Nitrifikationsstufe

Hauptbestandteil des Biogases ist das energetisch nutzbare Methan (CH4). Biogas enthält neben CH4 jedoch auch signifikante Mengen Kohlenstoffdioxid (CO2) und weitere Begleitgase. Problematisch ist dabei Schwefelwasserstoff (H2S), welcher vermehrt bei der Um-setzung von proteinhaltigem Substrat in H2S Konzentrationen von 200 bis 5.000 ppm (0,02 bis 0,5 Vol.-%) gebildet wird. Um den Methananteil des Biogases wirtschaftlich zur Energieerzeugung nutzen zu können, muss das Biogas somit zuvor entschwefelt werden. In der Biogasentschwefelung werden physikalische, chemische sowie biologische Verfahren angewandt. Durch den Verbrauch von Fäll- und Adsorptionsmitteln sind die chemischen und physikalischen Verfahren jedoch meist mit hohen Betriebskosten verbunden. Die biologischen Verfahren hingegen basieren auf mikrobiologische aerobe Atmungsprozesse, die meistens durch einen Lufteintrag in den Biogasstrom erfolgen. Sollte das Biogas anschließend auf Erdgasqualität aufbereitet werden, sind Restmengen an Stickstoff und Sauerstoff nur durch energetisch aufwändige Verfahren oder durch hohen Betriebsmittelverbrauch zu entfernen. Alternativ lässt sich Nitrat anstelle von Sauerstoff als Oxidationsquelle nutzen. Nitrat kann aus dem im Gärrest enthaltenen Ammonium produziert werden. Da Nitrat als Sauerstoffdonor bei der mikrobiologischen Biogasentschwefelung verwendet und dieser im Gärrest produziert werden kann, wird im Rahmen des angestrebten Vorhabens ein innovatives Verfahren - Das Nitro-SX Verfahren - untersucht, mit welchem kostengünstig und umweltschonend Schwefelwasserstoff mithilfe von nitrifizierten Gärrest aus dem Biogas entfernt wird. Das entstehende Nitrat wird zusammen mit dem Schwefelwasserstoff mikrobiologisch zu Sulfat oder Schwefel und Stickstoff verstoffwechselt. Somit kann dieses Verfahren ebenfalls zur Reduzierung des Nitrateintrages beitragen. Als Produkte des Verfahrens würden zum einen entschwefeltes Biogas, zum anderen ein nitratarmer Gärrest entstehen.

1 2 3 4 561 62 63