Aufbauend auf den Erfahrungen des Antragstellers auf dem Gebiet der mehrdimensionalen Gaschromatographie (GC) und der Luftanalytik wird eine Analysenmethode zur simultanen Bestimmung polarer und unpolarer flüchtiger Luftinhaltsstoffe (volatile organic compounds (VOC)) mittels zweidimensionaler GC entwickelt. Dazu werden Säulen unterschiedlicher Polarität für die Trennung der unpolaren und polaren Verbindungen getestet. Die aufgrund der ersten Untersuchungen ausgewählten Säulen werden seriell gekoppelt. Es wird eine GC-Methode entwickelt, mit deren Hilfe eine Ausschnittsdosierung der unpolaren Verbindungen auf die zweite Säule erfolgt. Weiterhin wird eine geeignete Strategie für die Probenahme entwickelt. Die Untersuchungen fokussieren sich dabei sowohl auf die adsorptive Anreicherung als auch auf die Probenahme mit Hilfe von Edelstahlkanistern. Es werden verschiedene Adsorbentien getestet und charakterisiert. Bei der Probenahme in Kanistern wird die Stabilität der polaren Verbindungen (Aldehyde, Ketone, Alkohole) im Kanister und der vollständige Probentransfer der Analyten in das Analysensystem untersucht. Zur Validierung der entwickelten gaschromatographischen Methode und zur Validierung der jeweiligen Probenahmestrategie werden Feldexperimente durchgeführt.
Die Reaktionskinetik der Oxidation von Schwefelwasserstoff zu Schwefel mit Luftsauerstoff an Aktivkohle soll aufgeklaert werden. Weiterhin soll geprueft werden, ob sich andere Adsorbentien wie z.B. Kieselgel, Molekularsieb usw. als Katalysatoren eignen. Die katalytische Oxidation des Schwefelwasserstoffs wird bei verschiedenen Versuchsbedingungen - H2S-Konzentration, Feuchtigkeit der Luft, Temperatur, Verweilzeit, Beladungsgrad des Adsorbens usw.- untersucht, wobei die zeitliche Konzentrationsaenderung von Schwefelwasserstoff sowie von eventuell gebildetem Schwefeldioxid gaschromatographisch mit einem schwefelempfindlichen flammenphotometrischen Detektor gemessen wird. Die Oxidationsprodukte von H2S in einer Aktivkohlesuspension in Abhaengigkeit von den Reaktionsbedingungen werden untersucht.
Das Vorhaben ist in 4 Zielbereiche gegliedert: 1) Aufklaerung, Bilanzierung organischer Wasserschadstoffe, insbesondere biologisch schwer abbaubare Verbindungen, 2) Adsorptive Wasserreinigung mit Aluminiumoxid, insbesondere Abtrennung und Rueckgewinnung von Phosphat aus Abwasser, 3) Aufklaerung der Wirkung von Ozon auf organische Wasserinhaltsstoffe und Entwicklung eines Verfahrens der kombinierten Anwendung von Ozon und biologischer Behandlung fuer Abwasser, 4) Verfahrensentwicklung zur Teilentsalzung von Wasser durch Ionenaustausch, insbesondere zur Verminderung des Nitratgehaltes.
In dem Vorhaben konnte gezeigt werden, dass die im Labor- und Technikumsmaßstab gewonnenen Ergebnisse in die Demonstrationsanlage zur umweltfreundlichen Herstellung von Hydrotalcit übertragen werden konnten. Die prognostizierte Energie- und Wassereinsparung konnte erzielt werden. Ebenfalls wurde die Zielsetzung bei den Abwasserwerten erreicht. Neben dem Einsatz von Hydrotalcit als Stabilisator in der PVC-Verarbeitung ergeben sich weitere Marktpotentiale bei der Polyolefinstabilisierung sowie mittelfristig Einsatzmöglichkeiten für basische Katalysatoren.
Die Belastung von Boeden setzt eine Klaerung der geogenen und anthropogenen Herkunft von relevanten Schadstoffen voraus. Exakte Aussagen ueber die Herkunft solcher Schadstoffe lassen sich jedoch stets nur dann machen, wenn auch die lokalen geochemischen Verhaeltnisse bekannt sind und bei den Untersuchungen mit erfasst werden. Dieses ist besonders ausschlaggebend, wenn Klaerschlaemme aufgebracht werden. Hierbei sind die Tonmineralien als Schadstoffadsorber eine Loesung zur Vermeidung der staendig wachsenden Mengen, die insbesondere zur Deponierung oder Verbrennung fuehren. Desweiteren sind bisher nur wenige Untersuchungen ueber die Relevanz von Arsen und Thallium durchgefuehrt worden.
Die bei der Begasung von Getreide in einer Muehle entstehenden unkontrollierten hochgiftigen Methylbromid-Emissionen werden vollstaendig vermieden und das eingesetzte Insektizid zurueckgewonnen und wiederverwertet. Hierzu ist folgende Verfahrenstechnik vorgesehen. Das eingesetzte Giftgas wird vor der Begasung auf einem Adsorberspeicher (Aktivkohle) gebunden und erst mit der zu begasenden Raumluft aus dem Adsorptionsmittel ausgetrieben und in die Muehle geleitet. Nach erfolgter Begasung wird durch umgekehrte Regelung von Temperatur und Druck die mit Schadstoff beladene Raumluft wieder durch das Adsorptionsmittel geleitet, wobei das Giftgas an der Aktivkohle adsorbiert wird. Mittels eines Hochleistungsgeblaeses mit Drosselventil wird ein fuer die Adsorption guenstiger Unterdruck von etwa 0,5 bar und ein fuer die Begasung (Desorption) entsprechender Unterdruck erzeugt. Durch mehrere Absperrhaehne koennen Adsorption und Desorption im Gegenstrom zueinander gefuehrt werden. Das Giftgas wird im Adsorber gespeichert und steht mit einer fahrbaren Anlage fuer eine weitere Nutzung zur Verfuegung. Durch Verringerung des Raumvolumens mittels eines aufblasbaren Verdraengungskoerpers kann der Begasungsaufwand zB bei geometrisch regelmaessig gestalteten leeren Siloraeumen deutlich gesenkt werden. Durch Anpassen der Stufenzahl der Adsorberspeicher an das Begasungsvolumen wird erreicht, dass die Adsorber immer mit annaehernd gleichen spezifischen Bedingungen arbeiten. Die Entsorgung kann durch diese mobile Anlage aeusserst wirtschaftlich durchgefuehrt werden.
Ziel des Vorhabens der TBM Technologieplattform Bioenergie und Methan GmbH & Co. KG ist es, die wirtschaftliche und nachhaltige Erzeugung von elektrischer Energie und Wärme aus Biomasse mit Hilfe der neu entwickelten AER (Absorption Enhanced Reforming)-Vergasungstechnologie in einer Anlagengröße von 10 MW Brennstoffwärmeleistung zu demonstrieren. Das neue Verfahren wurde vom Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) entwickelt. Im Vergleich zu bereits existierenden Biomasseanlagen kommen ein neuartiges Bettmaterial und eine veränderte Betriebsweise zur Anwendung, bei der ein wasserstoffreiches Gas erzeugt wird. Das als Bettmaterial eingesetzte Kalziumoxid bewirkt, dass das entstehende Produktgas weniger unerwünschtes CO2 und Teer enthält. Geringere Vergasungstemperaturen erlauben außerdem den Einsatz von holzartigen Biomassereststoffen aus der Landschaftspflege. Dies trägt den hohen Anforderungen an den Standort in der Nähe des Biosphärenreservats Schwäbische Alb Rechnung. Das Produktgas soll in einem Gasmotor in elektrische Energie umgewandelt werden. Die Prozessabwärme soll zum einen in einem ORC-Prozess zur zusätzlichen Erzeugung elektrischer Energie dienen und zum anderen als Fernwärme abgegeben werden. Bei optimalem Betrieb und gleichzeitiger Wärmenutzung können insgesamt rund 26.000 Tonnen CO2 pro Jahr und Anlage eingespart werden.
Ziel der Untersuchung ist es, von quantitativer Einsicht in das Zusammenwirken von Transportvorgaengen, Porenmorphologie und Porenentstehung ausgehend, die Herstellungsverfahren von poroesen Adsorbentien bzw. Katalysatoren methodisch zu begruenden und zu verbessern.
| Origin | Count |
|---|---|
| Bund | 616 |
| Land | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 1 |
| Förderprogramm | 604 |
| Text | 8 |
| Umweltprüfung | 3 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 19 |
| offen | 604 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 583 |
| Englisch | 75 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Dokument | 4 |
| Keine | 440 |
| Webseite | 181 |
| Topic | Count |
|---|---|
| Boden | 433 |
| Lebewesen und Lebensräume | 406 |
| Luft | 377 |
| Mensch und Umwelt | 624 |
| Wasser | 446 |
| Weitere | 614 |