The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Grundlagen zur Erfassung der physikalischen und chemischen Eigenschaften atmosphaerischer Aerosole: Groessenverteilung, chemische Zusammensetzung, insbesondere organische Verbindungen, Elementverteilung. Entwicklung von Messmethoden und -geraeten, Modellrechnungen zur Erfassung von Quellen und Senken, Transportberechnungen.
Wolken und Aerosole beeinflussen den Energiehaushalt und den Wasserkreislauf der Erde. Die Wolkenphase – ob eine Wolke aus Wassertröpfchen oder Eispartikeln besteht – beeinflusst den Strahlungseffekt der Wolken, da Wolkentröpfchen zahlreicher und kleiner sind als Eispartikel und daher mehr Sonnenstrahlung reflektieren.Durch die Erwärmung der Erde und der Atmosphäre durch den Klimawandel werden in Mischphasewolken (die aus Wassertröpfchen und Eispartikel bestehen können) Eispartikel teilweise durch Wassertröpfchen ersetzt und die Wolkenalbedo nimmt zu. Das führt zu einer negativen Rückkopplung, der sogenannten Wolkenphasenrückkopplung. Die Stärke dieser Rückkopplung hängt in Klimamodellen von der Repräsentation der Eisnukleation ab. Es wird immer deutlicher, dass die Schwankungsbreite von Klimaprojektionen (+1,8 bis +6,5 K) in der neuen Generation von Klimamodellen stark von der simulierten Wolkenphasenrückkopplung abhängt. Der gesellschaftliche Nutzen einer Verbesserung der Genauigkeit von Klimaprojektionen wird auf über 10 Millionen Millionen US-Dollar geschätzt. Eine bessere Darstellung der Eisbildung im Mischphasenregime in Klimamodellen ist deshalb dringend erforderlich.Aerosole können als Eiskeime, die das Gefrieren von Tröpfchen bewirken, die Häufigkeit von Eiswolken erhöhen und die Wolkenbedeckung und den Wassergehalt verringern. Insbesondere Mineralstaub kontrolliert häufig die Eisbildung in Wolken.In früheren Studien habe ich wichtige Diskrepanzen bezüglich der staubgetriebenen Wolkenvereisung im ECHAM-HAM Klimamodell und Satellitenbeobachtungen identifiziert, die sehr wahrscheinlich auch in anderen Klimamodellen vorhanden sind. Um diese zu beheben, werde ich in ECHAM-HAM Eisprozesse implementieren, die für das staubgetriebene Gefrieren von Wolkentröpfchen relevant sind, aber derzeit noch fehlen: Erstens werde ich eine Nachverfolgung von Eiskeimen implementieren, insbesonders deren Entfernung durch Niederschlagsbildung nach dem Gefrieren von Wolkentröpfchen. Dies sollte die Überschätzung der staubgetriebenen Wolkenvereisung über dem Südpolarmeer im Modell verringern. Zweitens werde ich eine Kategorie für Staub-Eiskeime hinzufügen, die bei Temperaturen unter -35 °C voraktiviert werden. Dies soll zu einem verstärkten Gefrieren von Wolkentröpfchen in Mischphasenwolken führen, was die im Modell gefundene generelle Unterschätzung des staubgetriebenen Gefrierens von Tröpfchen erklären und reduzieren soll. Drittens werde ich das Recycling von Staub-Eiskeimen nach der Sublimation von Eiskristallen implementieren. Dies soll ebenfalls zu einer Verbesserung des Gefrierens von Tröpfchen führen und den im Modell beobachteten Bias zusammen mit den anderen neuen Prozessen beseitigen. Diese neuen Prozesse werden anhand weltraumgestützter Beobachtungen evaluiert und ihre Auswirkungen auf die Wolkenphasenrückkopplung und die Klimasensitivität werden untersucht werden.
Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Ziel ist eine Geräteentwicklung für die unbeeinflusste Bestimmung von streckenintegrierten Aerosolparametern in einer anthropogen belasteten Atmosphäre. Das optische Messgerät wird in der Leipziger Stadtluft in 20 bis 40 m Höhe mit mehreren Lichtstrecken von einigen 100 m bis zu einigen Kilometern Länge gleichzeitig Messungen von Partikelextinktionsspektren bei Umgebungsfeuchte und für die Auswertung notwendige Spurengase durchführen. Aus den Extinktionsmessungen werden die Partikelgrößenverteilung und integrale Partikeleigenschaften im ungestörten Zustand mit Inversionsrechnungen berechnet.
Niedrige Wolken der marinen Grenzschicht kühlen das Erdsystem und spielen somit eine entscheidende Rolle für die Energiebilanz der Erde. Die physikalischen Eigenschaften dieser Wolken werden von Aerosolen beeinflusst. Veränderungen in der Zusammensetzung oder Konzentration atmosphärischer Aerosole können daher die Strahlungswirkung und somit das Kühlungspotential dieser Wolken verändern. Die Quantifizierung der Auswirkungen atmosphärischer Aerosole auf marine Grenzschichtwolken mit Beobachtungsdaten ist eine große Herausforderung, da viele Prozesse gleichzeitig wirken, statistisch schwer zu trennen sind und Wolken gegen Aerosoleinflüsse “gepuffert” sein können. Globale Klimamodelle können diese Prozesse nicht auflösen, sodass sie über Parametrisierungen festgeschrieben werden müssen, welche wiederum mit Unsicherheiten belastet sind. Durch diese Probleme in der Auswertung von Beobachtungen sowie in Modellen ist die Quantifizierung von Aerosol-Wolken-Interaktionen weiterhin eine der größten Unsicherheiten der Klimawissenschaften, was die Abschätzung der Klimasensitivität erschwert.Das beantragte Forschungsprojekt adressiert diese Herausforderungen und wird die Wirkung von Aerosolen auf marine Grenzschichtbewökung mit globalen Beobachtungsdaten quantifizieren und die Parameterisierungen dieser Prozesse in globalen Klimamodellen evaluieren. In aktuellen Studien haben statistische Modelle aus dem Bereich des maschinellen Lernens geholfen, das Aerosol-Wolken-Meteorologie-System besser zu verstehen und zu quantifizieren, da sie in der Lage sind, Effekte von Aerosolen von anderen atmosphärischen Größen zu isolieren. Das beantragte Forschungsprojekt wird sich auf maschinelle Lernmethoden stützen, welche zusätzlich in der Lage sind, alle relevanten Wolkeneigenschaften gleichzeitig vorherzusagen, und damit mögliche Puffer explizit berücksichtigen und quantifizieren können. Die statistischen Modelle werden verwendet, um Zusammenhänge und Prozesse in globalen Beobachtungsdaten und dem Output globaler Klimamodelle zu analysieren. Auf diese Weise kann eine prozessorientierte Evaluierung von Modellparameterisierungen erreicht werden, die sich deutlich von dem üblichen Vergleich klimatologisch gemittelter Wolkenmuster abhebt. So können Modellparametrisierungen beobachtungsgestützt eingegrenzt, und der Strahlungsantrieb durch Wechselwirkungen zwischen Aerosolen und marinen Grenzschichtwolken quantifiziert werden.
This collection contains Sentinel-2 Level 2A surface reflectances, which are computed for the country of Germany using the time-series based MAJA processor. During the Level 2A processing, the data are corrected for atmospheric effects and clouds and their shadows are detected. The MAJA L2A product is available online for the last 12 months. Further data are kept in the archive and are available upon request. Please see https://logiciels.cnes.fr/en/content/maja for additional information on the MAJA product. The MAJA product offers an alternative to the official ESA L2A product and has been processed with consideration of the characteristics of the Sentinel-2 mission (fast collection of time series, constant sensor perspective, and global coverage). Assumptions about the temporal constancy of the ground cover are taken into account for a robust detection of clouds and a more flexible determination of aerosol properties. As a result, an improved determination of the reflectance of sunlight at the earth's surface (pixel values of the multispectral image) is derived. Further Sentinel-2 Level 2A data computed using MAJA are available on the following website: https://theia.cnes.fr
Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
| Origin | Count |
|---|---|
| Bund | 1856 |
| Europa | 1 |
| Kommune | 1 |
| Land | 238 |
| Wissenschaft | 70 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 13 |
| Daten und Messstellen | 55 |
| Ereignis | 6 |
| Förderprogramm | 1534 |
| Gesetzestext | 13 |
| Repositorium | 3 |
| Text | 104 |
| Umweltprüfung | 4 |
| unbekannt | 253 |
| License | Count |
|---|---|
| geschlossen | 170 |
| offen | 1797 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 1597 |
| Englisch | 557 |
| Resource type | Count |
|---|---|
| Archiv | 20 |
| Bild | 10 |
| Datei | 219 |
| Dokument | 224 |
| Keine | 1344 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webdienst | 10 |
| Webseite | 342 |
| Topic | Count |
|---|---|
| Boden | 1355 |
| Lebewesen und Lebensräume | 1378 |
| Luft | 1601 |
| Mensch und Umwelt | 1972 |
| Wasser | 1521 |
| Weitere | 1972 |