Zielsetzung: Bestimmung starker Mineralsaeuren (speziell Schwefelsaeure) in Luft und Niederschlaegen. Kenntnis ueber 'Background'-Konzentrationen saurer atmosphaerischer Komponenten. Vorgehen: Untersuchung des Partikel- und Gasphasenanteils der Atmosphaere sowie von Regenproben. Bei Regenwasser 'voll'-Analysen und anschliessende Korrelation von Anionen und Kationen.
Wolkenbeobachtungen werden mit Aerosolmessungen auf dem Forschungsschiff (FS) Polarstern und einer Eisstation synchronisiert um den direkten und indirekten Aerosoleffekt zu identifizieren und zu quantifizieren. Diese werden mit dem Zustand der Atmosphäre in Zusammenhang mit deren Strahlungsflüssen am Boden in Verbindung gebracht. Strahlungsschließungsstudien werden durchgeführt um die fernerkundeten Aerosol- und Wolkeneigenschaften mit den in-situ Messungen der Bodenstrahlungsflüsse zu verbinden
Dieses Teilprojekt befasst sich mit der Rolle von Aerosolpartikeln im arktischen Klima und deren Änderung in den vergangenen aber auch in zukünftigen Jahrzehnten. Unter Verwendung eines allgemeinen Zirkulationsmodells der neuen Generation wird der Aerosoltransport und der Einfluss auf Strahlung und Wolken untersucht. Basierend auf Modellsimulationen wird der direkte Strahlungsantrieb und damit verbundene dynamische Rückkopplungsmechanismen für die arktische Region quantifiziert. Dies beinhaltet den Einfluss von Alterungs- und Mischungsprozessen auf mikrophysikalische und optische Eigenschaften als auch auf den Schnee/Eis-Albedoantrieb. Ein besonderer Fokus wird dabei auf Rußpartikel resultierend aus vermehrten Schiffs- und Waldbrandemissionen gelegt. Aerosol-Wolken-Wechselwirkungen und der Aerosol indirekte Strahlungsantrieb werden untersucht.
Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.
Funds for the central coordination of the research unit 'INUIT' (Ice Nucleation research UnIT) are requested within this proposal. The project serves the coordination and administration of the research unit as well as the promotion of cooperation and communication among the individual scientific projects of the unit. An annual status seminar is organized and conducted within this project. The funds for measures to promote gender equality are managed and measures for training of young researchers are coordinated. Within the project special sessions at international conferences or publication of special issues are initiated. A central data base to store and provide the data from all the various field and laboratory activities to all members of the research unit is maintained within the project. A comprehensive inter-comparison of the results of the ice nucleating properties of the common set of test aerosols studied by the various methods is conducted. An INUIT web page is set up and maintained. To support the INUIT spokesperson in conducting these tasks, staffing for a halftime position of a scientific administrator is applied for.
Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend
Immissionsschutzwald mindert schädliche oder belästigende Einwirkungen von Stäuben, Aerosolen, Gasen oder Strahlungen sowie Lärm auf Wohn-, Arbeits- oder Erholungsbereiche oder andere schutzbedürftige Objekte durch Absorption, Ausfilterung oder Sedimentation, sowie durch Förderung von Thermik und Turbulenz. Er mindert die Schallausbreitung von Lärmquellen. Immissionsschutzwald ist definiert durch seine Lage zwischen Emittenten und einem zu schützenden Bereich. Immissionsschutzwald mindert schädliche oder belästigende Einwirkungen von Stäuben, Aerosolen, Gasen oder Strahlungen sowie Lärm auf Wohn-, Arbeits- oder Erholungsbereiche oder andere schutzbedürftige Objekte durch Absorption, Ausfilterung oder Sedimentation, sowie durch Förderung von Thermik und Turbulenz. Er mindert die Schallausbreitung von Lärmquellen. Immissionsschutzwald ist definiert durch seine Lage zwischen Emittenten und einem zu schützenden Bereich.
Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
| Origin | Count |
|---|---|
| Bund | 1869 |
| Europa | 1 |
| Land | 241 |
| Wissenschaft | 70 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 13 |
| Daten und Messstellen | 55 |
| Ereignis | 6 |
| Förderprogramm | 1547 |
| Gesetzestext | 13 |
| Repositorium | 3 |
| Text | 98 |
| Umweltprüfung | 4 |
| unbekannt | 256 |
| License | Count |
|---|---|
| geschlossen | 162 |
| offen | 1816 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 1608 |
| Englisch | 561 |
| Resource type | Count |
|---|---|
| Archiv | 19 |
| Bild | 11 |
| Datei | 225 |
| Dokument | 222 |
| Keine | 1348 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webdienst | 9 |
| Webseite | 350 |
| Topic | Count |
|---|---|
| Boden | 1363 |
| Lebewesen und Lebensräume | 1609 |
| Luft | 1606 |
| Mensch und Umwelt | 1982 |
| Wasser | 1528 |
| Weitere | 1903 |