API src

Found 1981 results.

Related terms

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

In situ high spectral resolution inherent and apparent optical property data from diverse aquatic environments

Light emerging from natural water bodies and measured by remote sensing radiometers contains information about the local type and concentrations of phytoplankton, non-algal particles and colored dissolved organic matter in the underlying waters. An increase in spectral resolution in forthcoming satellite and airborne remote sensing missions is expected to lead to new or improved capabilities to characterize aquatic ecosystems. Such upcoming missions include NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission; the NASA Surface Biology and Geology observable mission; and NASA Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) - Next Generation airborne missions. In anticipation of these missions, we present an organized dataset of geographically diverse, quality-controlled, high spectral resolution inherent and apparent optical property (IOP/AOP) aquatic data. The data are intended to be of use to increase our understanding of aquatic optical properties, to develop aquatic remote sensing data product algorithms, and to perform calibration and validation activities for forthcoming aquatic-focused imaging spectrometry missions. The dataset is comprised of contributions from several investigators and investigating teams collected over a range of geographic areas and water types, including inland waters, estuaries and oceans. Specific in situ measurements include coefficients describing particulate absorption, particulate attenuation, non-algal particulate absorption, colored dissolved organic matter absorption, phytoplankton absorption, total absorption, total attenuation, particulate backscattering, and total backscattering, as well as remote sensing reflectance, and irradiance reflectance.

Transformation von partikelförmigen Kraftfahrzeugemissionen und deren Vorläufern im Nahfeld der Quelle

Es soll die Verdünnung des Abgases von Kraftfahrzeugen im Straßenverkehr und besonders die dabei erfolgende Transformation der Aerosolpartikel unter atmosphärischen Bedingungen untersucht werden. Um dieses Ziel zu realisieren, wird ein Kofferanhänger mit den notwendigen Messgeräten ausgestattet und von den zu untersuchenden Fahrzeugen gezogen. Der Aerosoleinlass an diesem Anhänger wird variabel angebracht sein, um Messungen in verschiedenen Abständen vom Auspuffrohr zu ermöglichen. Ziel ist es, gemessene Unterschiede zwischen Immissions- und Emissionsmessungen zu quantifizieren und damit beobachtete Differenzen zwischen Messungen am Motorprüfstand und solchen an einem Standort an der Straße soweit wie möglich zu erklären. Weiterhin soll der Einfluss der äußeren Bedingungen, wie meteorologische Parameter (Temperatur, relative Feuchte, etc.) und der Geschwindigkeit des Fahrzeuges quantifiziert werden. Ein wichtiger Bestandteil ist dabei auch die Charakterisierung der Mischungs- und Verdünnungsprozesse zwischen Auspuff und Probennahme. Diese soll mit zeitlich hochaufgelösten Messungen von Temperatur, Geschwindigkeit und Feuchte der Luft realisiert werden. Zusätzlich zu diesen experimentellen Arbeiten soll, wenn sinnvoll, im weiteren Verlauf des Projektes die Transformation der Partikel mit einem Modell simuliert werden.

Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)

Ultrafeine Partikel (UFP) mit einem aerodynamischen Durchmesser kleiner als 100 nm stehen unter dem Verdacht die menschliche Gesundheit zu schädigen, allerdings fehlt bisher die abschließende wissenschaftliche Evidenz aus epidemiologischen Studien. Zur Herleitung von Expositionskonzentrationen gegenüber UFP wurden zum Teil statistische Modellierungsverfahren genutzt um UFP-Anzahlkonzentrationen vorherzusagen. Ein häufig genutztes Verfahren ist eine auf Flächennutzung basierte lineare Regression („land-use regression“, LUR). Allerdings wurden in luftqualitativen Studien auch andere, ausgefeiltere Modellansätze benutzt, z.B. „machine learning“ (ML) oder „deep learning“ (DL), die eine bessere Vorhersagegenauigkeit versprechen. Das Ziel des Projekts ist die Modellierung von UFP-Anzahlkonzentration in urbanen Räumen basierend auf ML- und DL-Algorithmen. Diese Algorithmen versprechen eine bessere Vorhersagegenauigkeit gegenüber linearen Modellansätzen. Mit unserem Modellansatz wollen wir sowohl räumliche als auch zeitliche Variabilität der UFP-Anzahlkonzentrationen abbilden. In einem ersten Schritt werden die Messergebnisse aus mobilen Messkampagnen genutzt um ein ML-basiertes LUR Modell zu kalibrieren. Zusätzlich werden urbane Emissionen aus lokalen Quellen, abseits vom Straßenverkehr, identifiziert und explizit in das Modell einbezogen. In einem zweiten Schritt wird ein DL-Modellansatz basierend auf Langzeit-UFP-Messungen mit dem ML-Modell gekoppelt um die Repräsentierung der zeitlichen Variabilität zu verbessern. Unser vorgeschlagenes Arbeitsprogramm besteht aus fünf Arbeitspaketen (WP): WP 1 beinhaltet mobile Messungen mittels eines mobilen Labors und eines Messfahrads. WP 2 besteht aus stationären Messungen, die an Stationen des German Ultrafine Aerosol Network durchgeführt werden. In WP 3 werden wichtige UFP-Emissionsquellen, insbesondere Nicht-Verkehrsemissionen, mit Hilfe von zusätzlichen kurzzeitigen stationären Messungen identifiziert und quantifiziert. In WP 4 werden ML-Algorithmen genutzt um ein statistisches Modell aufzubauen. Als Kalibrierungsdatensatz werden die Messungen aus WP 1 benutzt. Das Modell wird UFP-Anzahlkonzentrationen mit Hilfe eines Datensatzes aus erklärenden Variablen, u.a. meteorologische Größen, Flächennutzung, urbaner Morphologie, Verkehrsmengen und zusätzlichen Informationen zu UFP-Quellen nach WP 3, vorhersagen. In WP 5 werden die UFP-Anzahlkonzentrationen aus WP 2 für einen DL-Modellansatz genutzt, der die zeitliche Variabilität repräsentieren wird. Dieser wird dann mit dem ML-Modell aus WP 4 gekoppelt. Der Nutzen der Modellkopplung wird mit dem Datensatz aus WP 3 validiert. Aus unserem Projekt wird ein Modell hervorgehen, das in der Lage ist die räumliche und zeitliche Variabilität urbaner UFP-Anzahlkonzentrationen in einer hohen Genauigkeit zu repräsentieren. Damit wird unsere Studie einen Beitrag zur Quantifizierung von Expositionskonzentrationen gegenüber UFP z.B. in epidemiologischen Studien leisten.

Plasmaaktivierte Eispartikel zur Fassadenreinigung und -desinfektion

Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen

Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.

Erforschung der atmosphaerischen Aerosole; Groessenverteilung, chemische Zusammensetzung, Kreislauf

Grundlagen zur Erfassung der physikalischen und chemischen Eigenschaften atmosphaerischer Aerosole: Groessenverteilung, chemische Zusammensetzung, insbesondere organische Verbindungen, Elementverteilung. Entwicklung von Messmethoden und -geraeten, Modellrechnungen zur Erfassung von Quellen und Senken, Transportberechnungen.

WTZ China: AIRSPACE - Die Bedeutung des welleninduzierten Austausches zwischen Ozean und Atmosphäre auf Luftschadstoffe und deren Einfluss auf das Klima

Nasselektrofilteranlage Sulfitzellstofffabrik

Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt  Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend

Von Daten-Level 1 zu 2- und 3 - von Daten zu Wissen im Bereich: 'Aerosol- Wolken- Oberflächen -Klimaparameter' unter Verwendung des HIS/EnMAP

1 2 3 4 5197 198 199