API src

Found 1982 results.

Related terms

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Variation der antarktischen Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Konzentrationen und Eigenschaften an NEumayer III im Vergleich zu deren Werten in der Arktis an der Forschungsstation Villum (VACCINE+)

Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Chemische Zusammensetzung und zeitliche Veränderung von leicht flüchtigen organischen Verbindungen im Luftaustrag großer Bevölkerungszentren während EMeRGe (Chocolate)

Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?

WF 3200 Lokaler Immissionsschutzwald

Immissionsschutzwald mindert schädliche oder belästigende Einwirkungen von Stäuben, Aerosolen, Gasen oder Strahlungen sowie Lärm auf Wohn-, Arbeits- oder Erholungsbereiche oder andere schutzbedürftige Objekte durch Absorption, Ausfilterung oder Sedimentation, sowie durch Förderung von Thermik und Turbulenz. Er mindert die Schallausbreitung von Lärmquellen.

Sonderabfall und Deponieverfahren

Verwertung und schadlose Beseitigung von Sonderabfaellen durch thermische Verfahren. Betrieb von Labor- und Technikumsanlagen zur Abfallverbrennung mit reinem Sauerstoff. Entwicklung einer zweistufigen Wirbelschichtanlage zur Verbrennung fluidisierbarer Produktionsrueckstaende. Entwicklung und praxisnahe Erprobung von on-line- und in-situ-Sensoren zur Emissionskontrolle von polyzyklischen aromatischen Kohlenwasserstoffen (PAH) in Aerosolform. Untersuchungen zum Verhalten von Schadstoffen an Aktivkohlen und Zeolithen bei der trockenen Rauchgasreinigung. Verfestigung von Rueckstaenden aus der Rauchgasreinigung. Pyrolyse von Klaerschlamm und Einsatz des Pyrolysekokses bei der Abwasserreinigung und Behandlung frischer Klaerschlaemme.

Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus?

Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.

Charakterisierung von Schiffsemissionen und ihr Eintrag ins Meer

PlumeBaSe beschäftigt sich mit der detaillierten Analyse der Zusammensetzung organischer Aerosole, freigesetzt während der Verbrennung fossiler Treibstoffe durch Schiffe, und deren weiterem Weg in der marinen Umwelt. Durch die hochaufgelöste Beprobung der Aerosole und ihrer Transformationsprodukte vom Schiffsschornstein bis in die Ostsee wird eine Brücke zwischen Atmosphären- und Meeresforschung geschlagen. Der zunehmende globale Warentransport auf dem Wasserweg erhöht den Druck auf marine Ökosysteme. Große Schiffe emittieren, zusätzlich zu gasförmigen Schadstoffen, große Mengen an Partikeln reich an Spurenmetallen und organischen Schadstoffen zunächst in die Atmosphäre von wo aus die Schadstoffe ins Meer gelangen. Negative Auswirkungen saurer Oxide und organischer Schadstoffe sind bekannt, weniger hingegen wurde bisher die Deposition der Schiffsaerosole und deren Beitrag zur Meeresverschmutzung untersucht. Besonders lückenhaft ist das Verständnis für die Alterungsprozesse während des atmosphärischen Transports sowie in der Wassersäule, beispielweise durch UV-Strahlung oder reaktive Sauerstoffspezies, obwohl die Transformationsprodukte sehr unterschiedliche Auswirkungen auf Biota haben und die Molekülstruktur den weiteren Weg in der Umwelt maßgeblich beeinflussen können.Um diese Wissenslücken zu schließen, soll in PlumeBaSe durch eine vielschichtige Umweltbeprobung eine neuartige, umfassende Erhebung des Emissionstransports und der Aerosolalterung erreicht werden. Die Projektpartner des Leibniz Instituts für Ostseeforschung Warnemünde (IOW), der Universität Rostock (UR) und der Karls-Universität Prag (CU) befassen sich mit den folgenden zentralen Hypothesen: (H1) Schiffsemissionen tragen signifikant zur Verschmutzung des Oberflächenwassers bei, der Eintrag ist besonders hoch entlang der Hauptschifffahrtsrouten. (H2) Während des atmosphärischen und marinen Transports ändern sich die physikalischen (Partikelgrößenverteilung) und chemischen (molekulare Profile) Eigenschaften der emittierten Aerosole, was ihren weiteren Weg in der Umwelt beeinflusst. (H3) Die Veränderungen auf molekularer Ebene können verfolgt und genutzt werden um Schadstoffeinträge über die Atmosphäre von den über Nassabscheider eingebrachte Verschmutzungen zu unterscheiden.Diese angestrebten Zielsetzungen werden in drei Arbeitspaketen adressiert via I. Zeitlich und räumlich hochaufgelöster Analyse von Partikelgrößenverteilungen direkt in den Abgasfahnen der Schiffe unter Nutzung eines unbemannten Luftschiffes, kombiniert mit hochsensitiven gerichteten und ungerichteten chemischen Analysen der II. atmosphärischen Schadstoffe in Partikeln unterschiedlicher Größe, sowie der III. Schadstoffe im Meerwasser. Die Ostsee stellt durch die hohe Schiffsverkehrsdichte, gute Erreichbarkeit und Regulation der Schiffsemissionen ein ideales Untersuchungsgebiet dar, welches sich auch als Modellsystem für die Beeinflussung küstennaher Ozeane durch Schiffsverkehr weltweit eignet.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP8: Sensorentwicklung

Modellierung von Freisetzungsszenarien mit unkonventionellen Spreng- und Brandvorrichtungen (USBV) mittels der CFD-Software openFOAM und der spezifischen Software-Erweiterung blastFoam im Vergleich zum Experiment

Vertikaler turbulenter Aerosolpartikeltransport über offenem Wasser und Eis in der zentralen Arktis während des Sommers - Aerosolpartikelquellen und -umwandlung in der arktischen marinen Grenzschicht

In der Arktis ist aktuell die stärkste Temperaturerhöhung im Zuge des Klimawandels zu beobachten. Diese Tatsache beruht auf einer komplexen Kette von Prozessen und Rückkopplungen, in denen Aerosolpartikel durch ihren Einfluss auf Strahlungsbilanz und Wolkenbildung eine wesentliche Rolle spielen. Um die Auswirkungen der sich ändernden Eisbedeckung abschätzen zu können, müssen die Wechselwirkungen zwischen Ozean sowie Eis und der Atmosphäre besser verstanden werden. Grundsätzlich mangelt es besonders im Bereich des arktischen Ozeans an atmosphärischen Messungen, die zum Verständnis der Prozesse aber auch zur Vorhersage der zu erwartenden Änderungen dringend benötigt werden. Austauschprozesse zwischen Ozean/Eis und Atmosphäre sind in diesen Regionen ebenfalls wenig untersucht. Im Rahmen dieses Projektes sollen mithilfe der RV Polarstern vertikale Austauschprozesse oberhalb von Wasser und Eis im Detail betrachtet werden und damit verbundene Quellen für Aerosolpartikel lokalisiert werden. Dazu ist eine Reihe von kontinuierlichen Aerosolmessungen an Bord des Schiffes geplant, die die Anzahlgrößenverteilungen, optische Parameter (Streuung, Absorption), das Mischungsverhältnis von Partikeln, die schwarzen Kohlenstoff (BC) enthalten, die Konzentration von eisbildenden Partikeln (INP) sowie die chemische Zusammensetzung der Aerosolpartikel umfassen. Weiterhin werden in den im Sommer häufig auftretenden Nebelphasen Nebelwasserproben gesammelt, sowie während der gesamten Kampagne täglich Wasserproben aus dem Ozean entnommen. Diese Proben werden nach der Kampagne auf die Konzentration von INP und BC untersucht. Weiterhin sollen erstmals mit Laser-Inkandeszenz Methoden die BC-Konzentrationen sowohl im luftgetragenen Aerosol als auch in Wasserproben gemessen werden. Zur Vorbereitung der Wasserproben mit hoher Salinität werden neuartige Methoden angewandt. Durch diese Kombination der parallelen Untersuchung von Bestandteilen in Luft und Wasser sollen Transport- und Austauschprozesse dieser Aerosolpartikel quantifiziert werden. Während langsamer Fahrt des Schiffes oder Drift mit dem Eis wird Messtechnik zur Bestimmung von vertikalen Partikelflüssen am vorderen Ausleger des Schiffes eingesetzt. Damit werden Zeitreihen des Windvektors und der Partikelkonzentration erfasst, mit deren Hilfe im Anschluss der vertikale, turbulente Partikelfluss über unterschiedlichen Oberflächen durch die Eddy Kovarianz Methode bestimmt werden soll. Kombiniert mit diesen Messungen wird die Konzentration der INP erfasst, um deren Ursprung und Quellen lokalisieren zu können. Ein weiteres Messsystem, das aus einer eindimensionalen Windmessung und einem Partikelzähler besteht, wird am Kranhaken des vorderen Auslegers befestigt und bestimmt Vertikalprofile der Partikelkonzentration, aus denen ebenfalls eine Abschätzung des Vertikalflusses von Partikeln möglich ist. Diese Methoden sind erprobt und etabliert, wurden nur bisher noch nie in dieser Form über dem arktischen Ozean angewendet.

1 2 3 4 5197 198 199