API src

Found 1982 results.

Related terms

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Chemische Zusammensetzung und zeitliche Veränderung von leicht flüchtigen organischen Verbindungen im Luftaustrag großer Bevölkerungszentren während EMeRGe (Chocolate)

Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?

Messung der horizontalen und vertikalen Verteilung von Luftschadstoffen in Wien

Das übergeordnete Ziel des geplanten Projektes besteht darin, vom Menschen verursachte Luftverschmutzung in Ballungsräumen besser zu verstehen. Die Untersuchung von Stickstoffdioxid (NO2) und Aerosolen wird sich dabei auf spektrale Messungen mit zwei MAX-DOAS (Multi-Axiale Differentielle Optische Absorptionsspektroskopie) Instrumenten an zwei verschiedenen Standorten in Wien stützen. Die MAX-DOAS Methode wird zur Messung von Streulicht in verschiedenen Blickrichtungen verwendet, aus denen die horizontale und vertikale Verteilung von Spurengasen und Aerosolen in der Troposphäre abgeleitet werden kann. Die Datenauswertung wird sich auf eine schnelle geometrische Annäherung sowie die exaktere Methode der Optimal Estimation stützen und troposphärische Säulen und Vertikalprofile von NO2 und Aerosolen ergeben. Die Vertikalprofile liefern eine wichtige Datengrundlage, die für den Vergleich mit bestehenden in-situ Messungen verwendet werden kann. Die aus den MAX-DOAS Messungen abgeleiteten troposphärischen Vertikalsäulen ermöglichen zusammen mit meteorologischen Messungen (z.B. Windgeschwindigkeit, Windrichtung) die Überwachung von Luftschadstoffen über städtischem Hintergrund, stark befahrenen Straßen, und industriellen Punktquellen auf horizontaler Ebene. Die geplanten Langzeitmessungen (über zwei Jahre) liefern einen wertvollen Datensatz für die Analyse der zeitlichen Variabilität von Luftschadstoffen (NO2 und Aerosole) über Wien. Ein Vergleich der in Wien erhobenen Daten mit vergleichbaren MAX-DOAS Messungen in Athen, Griechenland, oder Bremen, Deutschland, wird Ähnlichkeiten und Unterschiede zwischen den verschmutzten Standorten mit andersartigen meteorologischen und photochemischen Bedingungen aufzeigen. Die troposphärischen NO2-Säulen ermöglichen die Validierung von Satellitenmessungen der OMI, GOME-2, und TROPOMI Instrumente sowie den Vergleich mit Modellsimulationen (z.B. aus dem COPERNICUS Atmosphärenbeobachtungsdienst). Da sich bei den beiden Messgeräten Blickfelder einzelner azimutaler Richtungen teilweise überschneiden und die ergänzenden Messungen von in-situ Instrumenten eine Vielzahl an Information zur räumlichen Ausbreitung von NO2 bieten, soll versucht werden, ein räumlich aufgelöstes Bild der Luftverschmutzung über Wien mit Hilfe der tomographischen Darstellung zu entwickeln. Die Ergebnisse des Projektes werden wichtige Erkenntnisse zur horizontalen und vertikalen Ausbreitung von NO2 und Aerosolen liefern. Neben der Verbesserung der troposphärischen NO2 Auswertung werden die Ergebnisse wichtige Daten für Atmosphärenmodelle bereitstellen, da die Vertikalprofile von NO2 und Aerosolen eine nützliche Ergänzung zu den Punktmessungen von in-situ Messgeräten darstellen.

Direkte Beobachtung von Elementarprozessen bei der heterogenen Eis- Nukleation durch nichtlineare optische Spektroskopie: Die Rolle von Hydroxyl-Gruppen an den Oberflächen von mineralischen Aerosolpartikeln

Wolken beeinflussen den Energiehaushalt durch Streuung des Sonnenlichts und Absorption der Wärmestrahlung der Erde und gelten daher als wichtiger Faktor im Klimasystem. Die Untersuchung von atmosphärischen Prozessen im Allgemeinen und der Eisnukleation im Besonderen ist von grundlegender Bedeutung für unser Verständnis der mit Wolkenbildung, Niederschlagsentwicklung und Wechselwirkung mit der Strahlung zusammenhängenden Mechanismen. Mineralstaub, der den größten Teil der atmosphärischen Aerosole ausmacht, kann bei geringen Sättigungen und Temperaturen, die über dem homogenen Gefrierpunkt liegen, Eisbildung initiieren und auf diese Weise die Wolkendynamik und auch die Mikrophysik sowie die Eigenschaften der Wolken beeinflussen. Trotz zahlreicher Untersuchungen zum Einfluss von Partikelgröße und Oberflächeneigenschaften von Eiskeimen wissen wir über die heterogene Eisnukleation auf molekularer Ebene immer noch sehr wenig. Übergeordnetes Ziel des vorliegenden Projektverlängerungsantrags ist die Untersuchung der Bedeutung von OH-Gruppen an den Oberflächen mineralischer Aerosolpartikel in heterogenen Eisnukleationsprozessen mit Hilfe der nichtlinearen optischen (NLO-)Spektroskopie und insbesondere der Summenfrequenzspektroskopie bei tiefen Temperaturen. Im DFG-Projekt AB 604/1-1 wurde bereits der Grundstein für das neue Forschungsfeld (Atmosphärische Oberflächenwissenschaft) am IMK-AAF des Karlsruher Instituts für Technologie (KIT) gelegt. Das Projekt hat deutlich gezeigt, dass sich die NLO-Spektroskopie für die Untersuchung von heterogenen Eisnukleationsprozessen auf molekularer Ebene eignet. Im Rahmen des hier vorgeschlagenen Projekts sollen daher im Wesentlichen Wasser und Hydroxylgruppen an den Oberflächen zweier atmosphärisch relevanter Mineraloxide mit unterschiedlichem Eisnukleationsvermögen (Feldspat und Quarz) während des heterogenen Gefrierens untersucht werden. Mit Hilfe der Summenfrequenzspektroskopie bei tiefen Temperaturen sollen die Grenzflächenwasser (flüssig und Eis) auf mineralischen Oberflächen analysiert sowie der Einfluss der OH-Gruppen an der Oberfläche auf den heterogenen Gefrierprozess bestimmt werden. Die hier geplanten Untersuchungen werden als Grundlage für eine deterministische Beschreibung des Prozesses des heterogenen Gefrierens an atmosphärischen Aerosolpartikeln mineralischen Ursprungs dienen. Solche Studien sind für unser Verständnis der atmosphärischen Prozesse und somit auch des Klimasystems von großer Bedeutung und darüber hinaus auch im Hinblick auf die lokale Wettermodifikation (z.B. Wolkenimpfung, Hagelabwehr) und die Klimaschutzpolitik von besonderem Interesse.

Ableitung von Zustandsparametern der Atmosphäre aus Spektroskopischen DOAS - Messungen - RAPSODI

Die Erdatmosphäre unterliegt komplexen chemischen und dynamischen Prozessen, und eine genaue Kenntnis der Vertikalverteilung von Spurengasen und Aerosolen ist von größter Bedeutung für ein tiefgreifendes Verständnis des atmosphärischen Systems. Fernerkundungsmessungen sind bestens geeignet zur Bestimmung der atmosphärischen Vertikalstruktur. Boden- flugzeug- und satellitengebundene Fernerkundungsmessungen ermöglichen eine berührungslose Messung der atmosphärischen Zusammensetzung. Insbesondere stellt die Multi-Axiale Differentielle Absorptionsspektroskopie (MAX-DOAS) eine vielseitige und kostengünstige Methode zur Bestimmung der Vertikalverteilung zahlreicher Spurengase sowie von Aerosolen. Im Rahmen des beantragten Projektes wird ein neuartiger Auswertealgorithmus entwickelt, der eine vollständige Ausschöpfung des Informationsgehaltes von MAX-DOAS Streulichtmessungen zum Ziel hat. Im Gegensatz zu bisherigen Algorithmen erfolgen hierbei DOAS-Auswertung und Bestimmung des Vertikalprofils in einem einzigen Schritt. Von dieser gleichzeitigen Bestimmung von Vertikalprofilen von Spurengasen und Aerosolen direkt aus den gemessenen spektralen Radianzen erwarten wir eine signifikante Erhöhung des Gesamtinformationsgehaltes. Eine Simulation der breitbandigen spektralen Struktur, die in der traditionellen DOAS Analyse ignoriert wird, sowie eine explizite Modellierung der Rotations-Ramanstreuung (Ring-Effekt) liefern zusätzliche Informationen über den Zustand der Atmosphäre. Eine Kopplung eines T-Matrix- und/oder Mie-Streumodells an ein Strahlungstransportmodell ermöglicht in ähnlicher Weise wie bestehende Algorithmen für Aeronet Sonnenphotometermessungen die Bestimmung von mikrophysikalischen Aerosoleigenschaften, wie z.B. Größenverteilung und komplexer Brechungsindex, von Messungen im solaren Almukantarat. Dieser Algorithmus dient als Basis für eine eingehende Untersuchung des Gesamtinformationsgehaltes von MAX-DOAS Messungen bezüglich Spurengasen, Aerosolextinktion sowie mikrophysikalischen Aerosoleigenschaften. Messungen mittels eines polarisationssensitiven MAX-DOAS (PMAX-DOAS) Instruments, welches im Rahmen des Projektes entwickelt wird, ermöglichen eine weitere Erhöhung des Informationsgehaltes von Streulichtmessungen. Messungen des Himmelslicht bei verschiedenen Ausrichtungen eines rotierbaren Polarisationsfilters ermöglichen eine Rekonstruktion des Stokesvektors, und polarisationsabhängige Messungen der Intensität, der Spurengassäule sowie des Ringeffektes führen zu einer signifikanten Erhöhung der Genauigkeit von Aerosol- und Spurengasbestimmung. Zu einer vollständigen Nutzung des Informationsgehaltes von PMAX-DOAS-Messungen wird der Auswertealgorithmus auf der Basis eines vektorisierten Strahlungstransportmodells, das die Simulation des gesamten Stokes-Vektors ermöglicht, entwickelt.

Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken

Seit 1992 und dem ersten Erdgipfel haben verschiedene Länder erkannt, dass durch menschliche Aktivitäten das Klima stark beeinflusst wird, und sie planten, dieses Problem im Rahmen einer internationalen Konvention anzugehen. So brachten COPs (Conference of parties) viele Länder unter der Schirmherrschaft der Vereinten Nationen zusammen, um sich gegenseitig zu verpflichten, dieses Problem zu lösen. Bevor jedoch sinnvolle Maßnahmen ergriffen werden können, ist es wichtig, dass sich Wissenschaftler auf der ganzen Welt zusammentun, um für die Politik nützlichen Daten bereitzustellen. In diesem Zusammenhang wird das REACTE-Projekt vorgeschlagen, an dem international anerkannte französische und deutsche Forscher in jeweils sehr komplementären wissenschaftlichen Bereichen tätig sind.Die Atmosphäre ist ein komplexes und hoch reaktives System, in dem viele bio-physikochemische Prozesse ablaufen. Deshalb ist es von entscheidender Bedeutung, dieses System gut zu verstehen und zu wissen, wie es sich als Reaktion auf die verschiedenen Belastungen entwickelt, denen es ausgesetzt ist. Einer der wichtigsten Punkte ist daher die Kenntnis der Reaktionsfähigkeit eines solchen Systems in Abhängigkeit von den vorhandenen Spezies. Redoxreaktionen gehören zu den wichtigsten Transformationspfaden, die berücksichtigt werden müssen, um die Entwicklung der Atmosphäre besser zu verstehen. Das REACTE-Projekt konzentriert sich auf die (Photo-) Chemie von Übergangsmetallen (TMIs), die eine Hauptquelle für hochreaktive Spezies in Aerosolen und der wässrigen Phase troposphärischer Wolken darstellt. Tatsächlich gibt es derzeit nur sehr wenige Daten über die genaue Rolle und Reaktivität dieser Metalle, die derzeit fast ausschließlich in freier Form betrachtet werden, während bekannt ist, dass sie in natürlicher Umgebung als Komplexe vorliegen. Das REACTE-Projekt konzentriert sich auf die Beantwortung folgender Fragen: i) Wie beeinflusst die Komplexierung von TMIs deren Photoreaktivität, deren Redoxreaktionen und/oder die "Fenton"-Typ-Reaktionen mit H2O2? ii) Welche reaktiven Spezies werden mit diesen Reaktionen assoziiert, H2O2, HyOx Radikale und ihre jeweiligen Bildungsausbeuten? Welchen Einfluss haben sie auf die Oxidationskapazität der Atmosphäre und damit auf die chemische Zusammensetzung im Allgemeinen? Diese Ergebnisse werden in einen Modellmechanismus zu Prozessierung von chemischen Radikalreaktionen in wässriger Phase (CAPRAM) implementiert werden, um den Einfluss auf die Transformation organischer Stoffe, die HOx-Bilanz und den Oxidationszustand von TMIs in atmosphärischen Tröpfchen oder Aerosolen vorherzusagen. Das REACTE-Projekt verbindet komplementäre wissenschaftliche Kompetenzen, und ermöglicht damit die TMIs-Komplexchemie besser zu verstehen, sowie ihren Einfluss auf die Atmosphärenchemie zu erfassen. Es wird Daten liefern, um die Auswirkungen auf das Klima bzw. auf die Luftverschmutzung zu verstehen und abzuschätzen, welche derzeit stark unterschätzt werden.

Photosensibilisierung: Ein neuer Pfad zur SOA Bildung und Änderung der Eigenschaften von troposphärischen Partikeln

Troposphärische Aerosolpartikel sind oft in einer sehr simplen Art und Weise, als nicht-flüchtig und chemisch-inert, in Modellen beschrieben. Diese Annahmen werden durch die aktuelle Forschung in Frage gestellt, wonach die flüchtigen organischen Verbindungen (VOC) und sekundäre organische Aerosole (SOA) ein System bilden, das sich in der Atmosphäre durch chemische und dynamische Prozessierung entwickelt. Ein aktuelles Schlüsselproblem in der Atmosphärenchemie sind organische Partikel, welche in Modellen auf der Grundlage verfügbarer Parametrisierungen von Laborversuchen implementiert sind, die die SOA Bildung stark unterschätzen und nicht ausreichendend das Partikelwachstum vorhersagen. Differenzen zwischen den gemessenen und modellierten SOA-Konzentrationen deuten darauf hin, dass andere wesentliche SOA Quellen noch nicht identifiziert und charakterisiert sind. Zur Erklärung und Schließung dieser Lücke wurden Studien durchgeführt. So wurde gezeigt, dass das gasförmige Glyoxal deutlich zur SOA Masse durch Mehrphasenchemie beitragen kann. Solche Senken in der kondensierten Phase sind in der Lage, einen wichtigen Teil der fehlenden SOA Masse in Modellen, die oft als aqSOA bezeichnet wird, zu erklären. Jedoch implizieren Beobachtungen, dass es immer noch große Unsicherheiten in der SOA Bildung gibt. Herkömmliche aqSOA Quellen können offenbar nicht vollständig das fehlende SOA erklären. Weiterhin wurde gezeigt das, Multiphasenprozesse lichtabsorbierende partikuläre Verbindungen herstellen können. Die Bildung von solchen lichtabsorbierenden Spezies können neue photochemische Prozesse in Aerosolen und/oder in Gas/Partikel-Grenzflächen bewirken. Eine signifikante Menge an Literatur über photoinduzierten Ladungs- oder Energietransfer in organischen Molekülen existiert für andere Bereiche der Wissenschaft. Solche organischen Moleküle können Aromaten, substituierte Carbonyle und/oder stickstoffhaltige Verbindungen sein, welche allgegenwärtig in troposphärischen Aerosolen sind. Während die Wasserphotochemie aufgezeigt hat, dass viele dieser Prozesse, den Abbau von gelösten organischen Stoffen beschleunigen, ist nur wenig über solche Prozesse in/auf Aerosolpartikeln bekannt.Daher soll in PHOTOSOA, die Photosensibilisierung in der Troposphäre studiert werden, da diese eine wichtige Rolle bei der SOA-Bildung und Alterung spielen kann. Solche Photosensibilisierungen können neue chemische Pfade eröffnen, die bisher unberücksichtigt sind, obwohl sie die atmosphärische chemische Zusammensetzung beeinflussen können und so dazu beitragen die aktuellen SOA Unterschätzung abzubauen. Dieses Projekt zielt auf die Verringerung solcher Unsicherheiten, durch die Kombination von Laboruntersuchungen fokussiert auf die Chemie von Triplett-Zuständen von relevanten Photosensibilisatoren in verschiedenen Phasen und ihre Rolle bei der SOA-Bildung, ab. Die Grundlagenforschung zu diesen Prozessen ist erforderlich, um ihre troposphärische Bedeutung abschätzen zu können.

Luftmassenexport aus dem asiatischen Monsun in die außertropische Stratosphäre: Auswirkungen auf Chemie und Strahlung (AirExam)

Der asiatische Sommermonsun ist charakterisiert durch hohe Konvektion über Südasien, die mit der asiatischen Monsun-Antizyklone (AMA) zusammenhängt, der sich von der oberen Troposphäre bis in die untere Stratosphäre (UTLS) erstreckt. Diese Antizyclone ist das ausgeprägteste Zirkulationsmuster in diesen Höhen während des borealen Sommer. Es ist bekannt, dass der Export von Monsunluft quasi-isentropisch aus der AMA sowohl im Osten als auch im Westen, einen großen Einfluss auf die Zusammensetzung der außertropischen unteren Stratosphäre hat. Jedoch sind die relative Stärken der beiden Wege bisher unbekannt. Der Transport von Luftmassen aus der AMA in die nördliche außertropische UTLS wirkt sich entscheidend auf die Chemie der Stratosphäre und ihrenStrahlungshaushalt (z.B. durch Transport von H2O, Aerosol oder ozonschädigende Stoffe) aus. Im Rahmen dieses Projekts AirExam wird der quasi-isentropischer Luftmassenexport aus der AMA durch verschiedene Wegen und seine Auswirkungen auf Chemie und Strahlung der außertropische UTLS quantifiziert durch u.a. HALO-Flugzeugmessungen (insbesondere aus die für Sommer 2023 geplanten PHILEAS-Kampagne), Simulationen mit dem Chemischen Transportmodell CLaMS und Strahlungsberechnungen. Unser Projekt AirExam wird sich mit den folgenden offenen Schlüsselfragen befassen:1) Welchen relativen Beitrag leisten die beiden quasi-horizontalen Transportwege (nach Westen und Osten) aus dem asiatischen Monsun-Antizyklon zur Zusammensetzung der außertropischen unteren Stratosphäre?2) Wie groß ist die jährliche Variabilität des Transports aus der asiatischen Monsun-Antizyklone in die außertropische untere Stratosphäre und was sind die Hauptquellenregionen auf der Erde Oberfläche?3) Was ist die Auswirkung des Wasserdampftransports aus der asiatischen Monsun-Antizyklone zum H2O-Budget der außertropischen UTLS und seine Strahlungswirkung?In unserem Projekt werden wir HALO-Messungen (insbesondere H2O) mit globalen 3-dimensionalen CLaMS-Simulationen kombinieren, die von neuen hochaufgelösten ERA-5-Reanalyse des ECMWF angetrieben werden. CLaMS-Simulationen auf der Grundlage von ERA-5 sind ein neues Instrument zur zuverlässigen Beschreibung von Transportprozessen in der Region des asiatischen Monsuns und seiner globalen Auswirkungen. Die Strahlungswirkung des durch den asiatischen Monsun verursachten H2O-Anstiegs im Sommer und Herbst wird mit Hilfe des Strahlungs-Transfercodes Edwards und Slingo berechnet. H2O ist das wichtigste Treibhausgas, und die Befeuchtung der Stratosphäre ist eine wichtige Triebkraft des Klimawandels. Unser Projekt AirExam wird die Auswirkungen des verstärkten H2O-Transports in die untere Stratosphäre quantifizieren und kann daher dazu beitragen, die potenziellen Risiken des Luftmassentransports aus der asiatischen Monsunregion auf die globale Stratosphäre zu bewerten.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Central Coordination and Administration of the INUIT research unit

Funds for the central coordination of the research unit 'INUIT' (Ice Nucleation research UnIT) are requested within this proposal. The project serves the coordination and administration of the research unit as well as the promotion of cooperation and communication among the individual scientific projects of the unit. An annual status seminar is organized and conducted within this project. The funds for measures to promote gender equality are managed and measures for training of young researchers are coordinated. Within the project special sessions at international conferences or publication of special issues are initiated. A central data base to store and provide the data from all the various field and laboratory activities to all members of the research unit is maintained within the project. A comprehensive inter-comparison of the results of the ice nucleating properties of the common set of test aerosols studied by the various methods is conducted. An INUIT web page is set up and maintained. To support the INUIT spokesperson in conducting these tasks, staffing for a halftime position of a scientific administrator is applied for.

Organische Spurenanalyse von atmosphärischen Markersubstanzen in Eisbohrkernen

Um aktuelle Umwelt- und Klimaveränderungen in einem längeren zeitlichen Kontext bewerten zu können, insbesondere anthropogene und natürliche Einflüsse auf den atmosphärischen Aerosoleintrag in die Atmosphäre zu verstehen, werden Informationen über die Zusammensetzung der Atmosphäre in der Vergangenheit benötigt. Eisbohrkerne aus den Polarregionen oder Gletschern sind wertvolle Umwelt- und Klimaarchive, da sie unter anderem das mit dem Schnellfall deponierte Aerosol enthalten. Daher kann die Analyse von partikel-gebundenen Spurenstoffen in Eisbohrkernen stoffliche Informationen über zurückliegende Umwelt- und Klimabedingungen liefern. Bis heute konzentrieren sich diese Bemühungen auf anorganische Substanzen und nur wenige organische Analyten. Ein Großteil der in diesen Bohrkernen enthaltenen Informationen geht dadurch verloren. Dies charakterisiert das Hauptziel des Vorhabens, durch Erarbeitung organischer spurenanalytischer Methoden basierend auf LC-HRMS (Flüssigchromatographie in Kombination mit hochauflösender Massenspektrometrie) eine ausgewählte Palette von Markersubstanzen zu quantifizieren. Zielmoleküle sind insbesondere neue Marker für biogene sekundäre organische Aerosole (biogenic SOA) und Biomasseverbrennungs-Marker. Die Auswahl dieser Verbindungen basiert einerseits auf dem zu erwartenden Informationsgewinn über die Quellen und deren Zusammensetzung (terrestrische Vegetation/Waldbrände), andererseits auf der atmosphärischen Lebensdauer der Marker, da nur langlebige Marker weit entfernt liegende Regionen erreichen können. Zusätzlich zur Analyse dieser Zielanalyten sollen auch ââ‚ Ìnon-target screening-Methoden zum Einsatz kommen. In enger Zusammenarbeit mit einem etablierten Eisbohrkernlabor am PSI in der Schweiz werden die entwickelten Analysetechniken auf einen Eisbohrkern aus dem Belukha-Gletscher im Sibirischen Altai Gebirge angewendet.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Kompositionsanalyse von Eisresiduen mittels der Kombination von Aerosol-Massenspektrometrie mit einem virtuellem Gegenstromimpaktor

Dieser Fortsetzungsantrag eines bestehenden Forschungsprojekts innerhalb der Forschergruppe INUIT (Ice Nuclei Research UnIT) hat zum Ziel, die physikalischen und chemischen Eigenschaften von atmosphärischen Eiskeimen (ice nucleating particles, INP) und Eispartikelresiduen (ice particle residuals, IPR) zu untersuchen. Es werden hauptsächlich zwei Messtechniken eingesetzt: virtueller Gegenstromimpaktor und Laserablationsmassenspektrometrie. Eiskeime (INP) aus atmosphärischem Aerosol werden erst in einem Eiskeimzähler aktiviert, so dass sich Eiskristalle bilden, die dann mit einem bepumpten Gegenstromimpaktor aufgrund ihrer Größe extrahiert und verdunstet werden können. Die freigesetzten INP können wiederum mit dem Massenspektrometer oder anderen Messtechniken untersucht werden. Dieses Experiment wird während einer Feldmesskampagne in der Nähe der Quellen von potentiell guten Eiskeimen (Mineralstaub, Biopartikel, anthropogene Partikel) durchgeführt. Ein geeigneter Kampagnenort hierfür ist die Mittelmeerregion, z.B. Südspanien. Die Eispartikelresiduen werden direkt aus unterkühlten Mischphasenwolken gesammelt. Hierzu wird ein spezieller Eis-Gegenstromimpaktor eingesetzt, der nur Eiskristalle sammelt und von den unterkühlten Wolkentröpfchen trennt. Nach der Sammlung wird das Eis der Eiskristalle verdunstet, so dass die Eisresidualpartikel freigesetzt werden und mittels des Laser- Ablationsmassenspektrometers analysiert werden können. Dieses Experiment wird auf einer Bergstation (Jungfraujoch) durchgeführt. Die Kombination aus Eiskeimzähler, bepumptem Gegenstromimpaktor und Massenspektrometer wird auch unter Laborbedingen zur Bestimmung der Eiskeimfähigkeit von internen und externen Partikelmischungen (z.B. biologisch/mineralisch) betrieben. Das Laserablationsmassenspektrometer in seiner Eigenschaft als Einzelpartikel-Analysegerät wird ebenfalls dazu eingesetzt, um den Mischungszustand der erzeugten Mischpartikel zu charakterisieren.

1 2 3 4 5197 198 199