API src

Found 1895 results.

Related terms

Optimierung der Wassereffizienz bei der luftgestützten Waldbrandbekämpfung

Zielsetzung: Deutschlandweit vernichteten Waldbrände im Jahr 2023 eine Fläche von1.240 Hektar Wald (3.058 Hektar in 2022). Das entspricht rund 1.771 Fußballfeldern. Hinzu kommt, dass global gesehen Waldbrände mit 6,5 Gigatonnen die viertgrößte Ausstoßquelle von CO2 Emissionen sind und jährlich weltweit Schäden in Milliardenhöhe verursachen. Gleichzeitig steht nicht ausreichend und oft nicht schnell genug Wasser zum Löschen zur Verfügung. Abhilfe verspricht hier der Systemansatz von CAURUS Technologies. Durch die Kombination von digitaler Sensortechnik mit Löschinnovation auf Basis von Dispersionstechnologie kann die Löscheffizienz von Wasser bis um das Zehnfache erhöht werden. Das System benötigt geringe Investitionskosten und ermöglich eine unmittelbare Verbesserung des Löscherfolges durch erhöhte Präzision und Effizienz des Löschwassereinsatzes sowie verbesserte Sicherheit der Einsatzkräfte. Auf diese Weise kann ein besserer Schutz für Bevölkerung, Umwelt und Wirtschaft erreicht werden. Große Waldbrände bedürfen in der Regel Löschunterstützung aus der Luft, da die Feuerwehr nicht zu allen betroffenen Gebieten vordringen kann oder Brände zu groß und gefährlich für Bodeneinsatzkräfte werden. Die derzeitig zum Einsatz kommenden Technologien wurde hauptsächlich in den 1970er Jahren entwickelt und basieren auf einem Prinzip: dem Abwurf großer Mengen Wasser aus der Luft durch Hubschrauber oder Flugzeuge. Grundproblem ist hier jedoch, dass ein Großteil des eingesetzten Wassers die Flammen nicht erreicht. 50 - 80% des Wassers verwehen oder verdampfen über der Vegetation, z.B. Baumwipfel, und bleiben somit wirkungslos. Die durch die Klimakrise zunehmende Wasserknappheit stellt die Waldbrandbekämpfung daher noch vor weitere Herausforderungen und die Schäden nehmen zu. Der Systemansatz von CAURUS Technologies besteht aus zwei Komponenten: - Eine digitale Plattform zur Optimierung des Wasserabwurfes durch präzisere Zielführung, datenbasierte Auswertung der Löschwirkung und kontinuierliche Entscheidungsunterstützung der Einsatzkräfte - Ein neuartiges Löschverfahren auf Basis von Dispersionstechnologie. Hierbei wird ein neu entwickelter Löschbehälter aus sicherer Höhe über dem Brandherd abgeworfen und innerhalb des Feuers in eine Aerosol Löschwolke mit bis zu zehnfach höherer Löschwirkung verwandelt

Erzeugung ultrafeiner hochtemperaturfester Aerosole durch Kondensation

Ultrafeine Partikel haben in den letzten Jahren zunehmend an Bedeutung gewonnen. Diese sogenannten Nanopartikel sind vielfaeltig anwendbar, wie z.B. als Ausgangsmaterialien fuer hochfeste Werkstoffe, in Gassensoren, als Katalysatoren, in Arzneimitteln und in Testaerosolen fuer die Heissgasentstaubung. Es wurde eine Anlage zur Nanopartikelerzeugung durch Laserverdampfung entwickelt. Zur Herstellung wird Aluminiumoxidkeramik, Graphit, Kupfer oder Aluminium mit einem C02-Laser verdampft. Aus der Kondensation entstehen kugelfoermige Primaerpartikel in einem Groessenbereich zwischen 10 und 500 Nanometern. Nach der Erstarrung koennen die Partikel durch Agglomeration unregelmassig geformte Ketten oder Flocken bilden. Deshalb wird das Aerosol so weit verduennt, dass Kollisionen der Partikel unwahrscheinlich werden und damit die Agglomerationswahrscheinlichkeit stark reduziert wird. Das zu verdampfende Material, in Form eines runden Targets, ist unter einen Drehteller montiert, der in Rotation versetzt und gleichzeitig horizontal verschoben wird. Der Laserstrahl wird von unten auf das Target fokussiert und hinterlasst durch die Targetbewegung eine spiralfoermige Bahn auf der Materialoberflaeche. Das Material verdampft lokal im Laserfokus. Der Dampf wird durch radial zustroemendes Argon in einen Sinterkegel unterhalb des Targets transportiert, wo in der heissen Zone die Kondensation und Koagulation stattfindet. In diesem Bereich bleiben die Partikel durch Absorption der Laserstrahlung fluessig, unterhalb der heissen Zone erstarren sie. Durch die Volumenaufweitung des Kegels nach unten und das seitliche Zustroemen von Argon nimmt die Partikelkonzentration von oben nach unten stark ab. Die Partikel werden auf einer Filtermembran abgeschieden und mit einem Rasterelektronenmikroskop auf Groesse, Form und Agglomerationsgrad untersucht. Neben dem Ziel der Nanopartikelerzeugung werden die zugrundeliegenden Prozesse Verdampfung, Kondensation und Koagulation sowohl experimentell als auch theoretisch detailliert untersucht.

Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten

Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

Die Rolle von Petrichor, der Duft von Regen, in Wüstenökosystemen und die Folgen unter der globalen Erwärmung

In Wüstenökosystemen wird die zeitliche Dynamik durch Nass-Trocken-Zyklen bestimmt, und diese werden durch den Klimawandel zunehmend gestört. Niederschläge in Wüstenökosystemen lösen einen unmittelbaren CO2-Anstieg aus, verbunden mit erheblichen Emissionen von Petrichor, dem "Geruch von Regen". Dieser erdige Geruch setzt sich aus verschiedenen flüchtigen organischen Verbindungen (VOC) zusammen, die mit dem Wind über große Entfernungen transportiert werden. Die Wassertröpfchen, die mit trockenen Böden in Berührung kommen, setzen zuvor gebundene VOCs frei und regen Bakterien und Pilze zur Neuproduktion von VOCs an. Sechzig Jahre nach der ersten Beschreibung von Petrichor ist immer noch wenig über seine Rolle in der Bodenökologie und seine Bedeutung für die Atmosphärenchemie bekannt.Biotische Interaktionen zwischen Mitgliedern mikrobieller Gemeinschaften im Boden erfolgen durch den Austausch von Signalmolekülen. Flüchtige Signale wirken auf einer größeren räumlichen Skala als lösliche Verbindungen und werden zunehmend als entscheidende Infochemikalien zur Vermittlung von intra- und interspezifischen Interaktionen zwischen Bodenmikrobiota anerkannt. Dennoch ist wenig über die spezifischen Funktionen von VOCs und ihre Rolle bei der Vermittlung von Wechselwirkungen zwischen Organismen bekannt, insbesondere in Trockengebieten.Die Emissionen von Petrichor aus Trockengebieten wie der Negev-Wüste (Israel) werden sich in naher Zukunft verändern, da die Niederschlagsmenge bis 2050 voraussichtlich um ~40 % zunehmen wird. Biogene flüchtige organische Verbindungen (VOC) - insbesondere Terpenoide und Benzoide - sind als wesentliche Akteure der Atmosphärenchemie bekannt und beeinflussen das Klima durch Wolkenbildung und die Entstehung sekundärer organischer Aerosole die Strahlungsenergie absorbieren und streuen. Mikrobielle Bodengemeinschaften dominieren die Wüstenökosysteme, die sich über 20 % der Erdoberfläche erstrecken. Daher ist es dringend erforderlich, die Rolle der mikrobiellen Gemeinschaften im Wüstenboden für die Chemie der Atmosphäre zu untersuchen. Unser Ziel ist es, die Quellen, Regulierungsmechanismen und Kontrollfaktoren der VOC-Emissionen in Wüstenökosystemen zu verstehen, was für die Erstellung umfassender globaler Klimaprojektionsmodelle von größter Bedeutung ist. Zu diesem Zweck wollen wir Veränderungen in der Petrichor-Zusammensetzung entlang eines Trockenheitsgradienten in der Negev-Wüste (Israel) quantifizieren und charakterisieren, die gesamte aktive mikrobielle Gemeinschaft (Eukaryonten, Prokaryonten, Archaeen) nach Niederschlagsereignissen in den Biokrusten der Wüste und in tieferen Bodenschichten identifizieren, mit Hilfe von Netzwerkanalysen Kandidaten für die Produktion von und die Reaktion auf VOC ermitteln und die Rolle der VOC durch Experimente mit mikrobiellen Isolaten und durch die Anwendung von Inhibitoren der wichtigsten Petrichor-VOC in Böden verifizieren und die globalen Auswirkungen der Petrichor-Emissionen hochskalieren.

PHILEAS (Untersuchung des Transport aus dem asiatischen Sommermonsun in hohe Breiten)

PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?

Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis (AIDA)

Im Klimasystem der Arktis spielen Aerosolpartikel eine bedeutende Rolle für das Verständnis der schnellen Erwärmung. Durch die niedrige Hintergrundkonzentration sind lokale Neubildungs-Ereignisse eine wichtige Quelle, und können signifikant zu Wolkenkondensationskeimen beitragen. Aufgrund der schweren Erreichbarkeit gibt es insbesondere wenig Messungen zur vertikalen Verteilung von Aerosolpartikeln in der Arktis. Die Aerosol-Konzentration ist stark variabel in Raum und Zeit, und daher schwierig in Modellen abzubilden. Räumliche Verteilung und zeitliche Variabilität auf kleinen Skalen hängen von den Umgebungsbedingungen ab, wie der Stabilität der Atmosphäre, Wolken, Orographie und Oberflächeneigenschaften. Daher untersucht das Projekt AIDA (Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis) die kleinskalige Variabilität am Standort Ny-Alesund in Spitzbergen, einem natürlichen Labor von kleinskaligen Kontrasten in den Umgebungsbedingungen, mit einer Kombination von zeitgleichen Fesselballon- und Drohnen-Messungen, die in die bestehenden, kontinuierlich messenden Observatorien in Ny-Alesund und auf dem Zeppelinberg eingebettet werden. Die Messungen sind für die Übergangszeit zwischen Arktischem Dunst mit überwiegend Ferntransport im Frühling und überwiegend lokal gebildeten Aerosolpartikeln im Sommer geplant. Drohne und Fesselballon sind mit ähnlichen Aerosol-Sensoren ausgerüstet: Die wichtigsten Messgeräte sind dabei jeweils zwei parallel betriebene Kondensationskernzähler mit unterschiedlicher unterer Nachweisgrenze im Größenbereich 3-20 nm, um neu gebildete Aerosolpartikel nachzuweisen. Ein leichtes Aerosol-Größenspektrometer kommt zum ersten Mal auf dem Ballon zum Einsatz, um die Aerosol-Größenverteilung zwischen 8 und 300 nm zu messen. Außerdem sind Sensoren für größere Aerosolpartikel implementiert, um die Neubildung von Aerosolpartikeln in Abhängigkeit von bereits existierendem Aerosol und dem Beitrag von Ferntransport zu untersuchen. Temperatur und Feuchte werden mit hoher zeitlicher Auflösung gemessen, um den Einfluss von Stabilität und vertikaler Durchmischung zu charakterisieren. Der dreidimensionale Windvektor wird gemessen, da das lokale Windfeld sehr stark von der lokalen Orographie geprägt ist. Es wird erwartet, dass die kleinskalige Variabilität der thermodynamischen Bedingungen einen signifikanten Einfluss auf die Neubildung und das Wachstum von neu gebildeten Aerosolpartikeln hat. Die Daten der horizontalen und vertikalen Verteilung der Aerosol-Partikel werden anschließend analysiert in Zusammenarbeit mit den Partnern, die komplementäre Mess-Systeme in Ny-Alesund, auf dem Zeppelin-Berg und an anderen arktischen Standorten betreiben. Die Ergebnisse tragen bei zu einem besseren Verständnis der kleinskaligen Verteilung von Aerosolpartikeln, deren Entstehung, Wachstum und vertikalen Transportprozesse.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Langwelliger Strahlungsantrieb durch Aerosol-Wolken-Wechselwirkungen: Satelliten und Klimamodelle im Vergleich zu HALO

Der Strahlungsantrieb durch anthropogene Aerosole aufgrund von Aerosol-Wolken-Wechselwirkungen ist die Hauptunsicherheit bezüglich des Antriebs des Klimawandels. Für Flüssigwasserwolken, die den Strahlungsantrieb im solaren (kurzwelligen) Spektrum dominieren, konnten mittlerweile einige Fortschritte in der Quantifizierung erzielt werden. Im Gegensatz dazu gibt es für den Strahlungsantrieb im langwelligen (terrestrischen) Spektralbereich nur sehr grobe Abschätzungen von Klimamodellen. In Vorarbeiten haben wir einen Vorschlag entwickelt, wir aktive Fernerkundung zur Charakterisierung von Eiskristallkonzentrationen und Aerosol benutzt werden könnte, um eine beobachtungsbasierte Abschätzung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen im langwelligen Spektrum zu ermöglichen. Allerdings sind die Satellitendaten höchst unsicher und benötigen eine Validierung mit Referenzdaten. In FLASH wird vorgeschlagen, (i) die Satelliten-abgeleitete Eiskristallkonzentration sowie ihre Sensitivität bezüglich Temperatur, Vertikalwind und Aerosolbedingungen mit den neuen In-situ-Daten von HALO zu validieren bzw. evaluieren, (ii) die Ableitung der Eiskristallkonzentration vom Satelliten mit der von Lidar und Radar an Bord von HALO zu verifizieren, (iii) Klimamodelle zu evaluieren und zur Interpretation der statistischen Relationen zu benutzen, und (iv) schließlich eine Abschätzung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen und seines Unsicherheitsbereichs zu erarbeiten. Die Rolle von FLASH im SPP 1294 ist es, die vorhandenen Daten auszuwerten und mit den Daten geplanter Kampagnen in integrierender Weise zu arbeiten mit dem Ziel, eine bessere Abschätzung des Aerosol-Wolken-Strahlungsantriebs zu erreichen, neue innovative Satellitendaten zu validieren, und die relevanten Parametrisierungen in Klimamodellen zu evaluieren und zu verbessern.

Ausbreitung schwerer Gaswolken

Kalte Gase oder Aerosolwolken in der Atmosphaere koennen schwerer als die Umgebungsluft sein. Die entstehende Bewegung entlang des Bodens soll untersucht werden. Von speziellem Interesse sind die Ausbreitungsgeschwindigkeit sowie die Verduennung der Wolke durch die Vermischung mit der umgebenden Luft (Entrainment). Das Problem stellt sich bei der Verdampfung von verfluessigten Gasen (z.B. Erdgas) oder bei Unfaellen in chemischen Anlagen (z.B.Seveso). Staublawinen und Sandsturmfronten haben aehnliche Ausbreitungscharakteristiken. Am Institut wird ein Kanal aufgebaut (2.0 x 1.6 x 22.0 m), in dem die eindimensionale Ausbreitung ueber einer isolierten Unterlage gemessen werden wird. Damit werden theoretische Modelle ueberprueft und empirische Groessen bestimmt.

Untersuchung von Quellen umweltschaedigender Emissionen mit kernphysikalischen Methoden (z.B. Moessbauereffekt)

Problemstellung: Luftverschmutzung durch ultrafeine (Staub)Teilchen verschiedenster Herkunft (Strassenverkehr, Hausbrand, Industrie). Zielsetzung: Identifikation dieser verschiedenen umweltbelastenden Quellen. Methoden: 57Fe Moessbauereffekt, eventuell Neutronenaktivierungsanalyse (Atominstitut der oesterreichischen Universitaeten). Ergebnisse: Studien an folgenden Proben: Strassenstaub variabler Teilchengroesse, Flugaschen verschiedenster Herkunft, Autoauspuffsystemen; Vergleiche mit NBS Standardproben; Identifikation charakteristischer Eisenverbindungen (Fe2O3, Fe3O4, Fe(OH)x) in den Proben sowie ultrafeiner (1O nm) Fe2O3 - Teilchen.

1 2 3 4 5188 189 190