API src

Found 1985 results.

Related terms

Optimierung der Wassereffizienz bei der luftgestützten Waldbrandbekämpfung

Zielsetzung: Deutschlandweit vernichteten Waldbrände im Jahr 2023 eine Fläche von1.240 Hektar Wald (3.058 Hektar in 2022). Das entspricht rund 1.771 Fußballfeldern. Hinzu kommt, dass global gesehen Waldbrände mit 6,5 Gigatonnen die viertgrößte Ausstoßquelle von CO2 Emissionen sind und jährlich weltweit Schäden in Milliardenhöhe verursachen. Gleichzeitig steht nicht ausreichend und oft nicht schnell genug Wasser zum Löschen zur Verfügung. Abhilfe verspricht hier der Systemansatz von CAURUS Technologies. Durch die Kombination von digitaler Sensortechnik mit Löschinnovation auf Basis von Dispersionstechnologie kann die Löscheffizienz von Wasser bis um das Zehnfache erhöht werden. Das System benötigt geringe Investitionskosten und ermöglich eine unmittelbare Verbesserung des Löscherfolges durch erhöhte Präzision und Effizienz des Löschwassereinsatzes sowie verbesserte Sicherheit der Einsatzkräfte. Auf diese Weise kann ein besserer Schutz für Bevölkerung, Umwelt und Wirtschaft erreicht werden. Große Waldbrände bedürfen in der Regel Löschunterstützung aus der Luft, da die Feuerwehr nicht zu allen betroffenen Gebieten vordringen kann oder Brände zu groß und gefährlich für Bodeneinsatzkräfte werden. Die derzeitig zum Einsatz kommenden Technologien wurde hauptsächlich in den 1970er Jahren entwickelt und basieren auf einem Prinzip: dem Abwurf großer Mengen Wasser aus der Luft durch Hubschrauber oder Flugzeuge. Grundproblem ist hier jedoch, dass ein Großteil des eingesetzten Wassers die Flammen nicht erreicht. 50 - 80% des Wassers verwehen oder verdampfen über der Vegetation, z.B. Baumwipfel, und bleiben somit wirkungslos. Die durch die Klimakrise zunehmende Wasserknappheit stellt die Waldbrandbekämpfung daher noch vor weitere Herausforderungen und die Schäden nehmen zu. Der Systemansatz von CAURUS Technologies besteht aus zwei Komponenten: - Eine digitale Plattform zur Optimierung des Wasserabwurfes durch präzisere Zielführung, datenbasierte Auswertung der Löschwirkung und kontinuierliche Entscheidungsunterstützung der Einsatzkräfte - Ein neuartiges Löschverfahren auf Basis von Dispersionstechnologie. Hierbei wird ein neu entwickelter Löschbehälter aus sicherer Höhe über dem Brandherd abgeworfen und innerhalb des Feuers in eine Aerosol Löschwolke mit bis zu zehnfach höherer Löschwirkung verwandelt

Sentinel-5P TROPOMI - Aerosol Single-Scattering Albedo (ASSA), Level 3 - Global

Aerosol single-scattering albedo (ASSA) as derived from TROPOMI observations. ASSA is a measure of how much light is scattered by aerosols compared to how much is absorbed. It is important for understanding the impact of aerosols on climate and radiative forcing. ASSA is unitless; a value of unity implies that extinction is completely due to scattering; conversely, a single-scattering albedo of zero implies that extinction is completely due to absorption. Daily ASSA observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Aerosolmessungen im Bereich kleiner 0.1 Mikrometer: Konzentrationsverteilung und Radioaktivitaetsanlagerung

Im Anschluss an fruehere Arbeiten sollen die Aerosol-Messungen auf den Groessenbereich unterhalb 0.1 Mikrometer ausgeweitet werden (angestrebte Groesse 0.02 Mikrometer). Dabei sind neben der Bestimmung der Konzentrationsverteilung des natuerlichen Aerosols vor allem auch die Mechanismen der Anlagerung von Radioaktivitaet an das Aerosol dieses Groessenbereichs von Interesse.

Schwermetall- und Radioativitaetsbelastung des Unterweserraums

Nachweis von Schwermetallen in a) Aerosolen, b) Boeden, c) Sedimenten, d) organischen Substanzen mit v.a. Roentgenfluoreszenz, auch AAS, HIXE u.a. Nachweis von Radioaktivitaeten in a) - d) mit Antikoinzidenz-Gamma-Spektrometer. Systematische Erfassung raeumlicher und zeitlicher Profile, zwecks Zuordnung zu Emittenten und Erarbeitung von Grundlagen fuer korrigierende Massnahmen. Erstellung eines Umwelt-Belastungs-Katasters; Feststellung von Konzentrations-Korrelationen verschiedener Elemente zwecks Rueckschlusses auf Emittenten etc.

Stratosphaerische Ozonzerstoerung ueber der Schweiz

Es wird die Abnahme des Ozonschildes ueber der Schweiz anhand der langjaehrigen schweiz. Ozonmessreihen von Arosa und Payerne untersucht. Dabei werden zur Trendanalyse Methoden der multiplen Regression eingesetzt. Durch Vergleich mit Potentral-Vortieity (PV)-Rechnungen und anderen meteorologischen Groessen soll abgeklaert werden, inwieweit die starken abnehmenden Trends im Ozon der unteren Stratosphaere durch Stoerungen in der Chemie der Arktis oder durch Ozonstoerungen an Hintergrundsaerosolen erklaert werden koennen.

Kontinuierliche Ueberwachung der Schadstoffimmission der unteren Erdatmosphaere (bis 200 m Hoehe) mittels Fessel-Heissluftballon

Fuer Umweltschaeden haftet nach bestehendem Recht der Verursacher. Dieser ist insbesondere bei Luftverunreinigungen z.B. durch Verbrennung von Abfaellen bei Nacht in vielen Faellen nicht zu ermitteln, da wegen der geringen Sinkgeschwindigkeit staubfoermiger oder tropfenfoermiger Schadstoffe laengst alle Verbrennungsspuren o.ae. beseitigt sind, wenn am Erdboden die Immission erfolgt. Bei Ueberwachung der unteren 200 m der Atmosphaere koennen Emissionen aber sehr viel frueher bereits ermittelt werden. Bei radioaktiven Emissionen, z.B. bei Reaktorunfaellen, kann durch Messung in der unteren Atmosphaere die Konzentration schon so fruehzeitig erfasst werden, dass ggf. Raeumung der gefaehrdeten Gebiete noch moeglich ist.

Langzeitvariation der stratospherischen Aerosolextinktion und der Aerosolteilchengrößen bei mittleren und hohen nördlichen Breiten

Stratosphärisches Sulphataerosol ist von großer Bedeutung für das Klimasystem, weil es solare Strahlung streut und damit die planetare Albedo der Erde erhöht. Es ist außerdem wichtig für die Chemie der Stratosphäre, weil die Aerosolpartikel an der Chloraktivierung - sogar außerhalb der Polarwirbel - sowie bekanntermaßen an der Bildung polarer stratosphärischer Wolken beteiligt sind. Darüber hinaus ist stratosphärisches Aerosol laut dem 5. Sachstandsbericht des Intergovernmental Panel on Climate Change mitverantwortlich für die gegenwärtige Erwärmungspause. Boden-gestützte Lidar-Beobachtungen stellen eine der genauesten Methoden zur Fernerkundung stratosphärischer Aerosole dar. Im Rahmen des hier vorgeschlagenen Forschungsprojekts sollen Lidar-Messungen an 3 unterschiedlichen Orten - die bisher noch nicht zur Untersuchung stratosphärischer Aerosole verwendet wurden - genutzt werden. Die Lidar Systeme werden vom Leibniz-Institut für Atmosphärenphysik (IAP) e.V. an der Universität Rostock in Kühlungsborn betrieben und befinden sich im ALOMAR Observatorium in Andenes (Norwegen), auf der Davis Forschungsstation (Antarktis), sowie in Kühlungsborn. Zwei der Lidar-Messreihen decken gegenwärtig einen Zeitraum von 20 Jahren ab und die Lidar-Messungen in Alomar werden bei mehreren Wellenlängen durchgeführt, was die Ableitung von Teilchengrößen der stratosphärischen Aerosolpartikel erlaubt. Ein Alleinstellungsmerkmal der Lidar-systeme ist ihre Tageslichtfähigkeit, d.h., die Messungen können nicht nur nachts durchgeführt werden, was erstmals die Messung stratosphärischer Aerosole im polaren Sommer erlaubt. Die Lidar-Rohdaten werden in der ersten Phase des Projekts in vertikale Profile des Rückstreukoeffizienten und/oder der Aerosolextinktion konvertiert. Darüber hinaus werden aus den Mehrfarbenmessungen in ALOMAR Aerosolteilchengrößen bestimmt. In der zweiten Projektphase werden die abgeleiteten Aerosolzeitreihen verwendet, um deren zeitliche Variabilität sowie Langzeittrends über einen Zeitraum von mehr als 20 Jahren zu untersuchen und zu quantifizieren. Hierbei spielen saisonale Variationen, Einflüsse der QBO (Quasi-Biennial-Oscillation) und von Vulkanausbrüchen eine entscheidende Rolle. Die abgeleiteten Aerosolteilchengrößen liefern außerdem dringend benötigte Randbedingungen für die Ableitung der stratosphärischen Aerosolextinktion aus Satellitenmessungen des Horizont-gestreuten Sonnenlichts. Diese Messmethode wurde in der Vergangenheit zur Auswertung verschiedener Satellitendatensätze (z.B. OSIRIS/Odin, SCIAMACHY/Envisat, OMPS-LP/Suomi) verwendet und basiert auf a priori Wissen der Größenverteilung stratosphärischer Aerosole. Die zu erwartenden Ergebnisse liefern wichtige neue Kenntnisse über die Variabilität und Langzeittrends stratosphärischer Aerosolparameter (Extinktion, optische Dichte und Teilchengröße) sowie des Strahlungsantriebs des stratosphärischen Aerosols in mittleren und hohen nördlichen Breiten und über dekadische Zeitskalen.

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

Gemeinsame nationale Initiative zur Validierung von EarthCARE, Teilvorhaben LMU München

1 2 3 4 5197 198 199