Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Ein Vergleich der Artendiversität von antarktischen und arktischen Cyanobakterienmatten (Cyanomatten) durch unsere Arbeitsgruppe weist auf eine überraschend hohe Übereinstimmungsrate der Arten hin (Kleinteich et al. 2017). Da es höchst unwahrscheinlich ist, dass sich diese Arten unabhängig voneinander in beiden polaren Regionen entwickelten, wird vermutet, dass Vögel oder Aerosole den Transport von Cyanomatten von der Arktis in die Antarktis ermöglichen. Entsprechend untersucht dieses Projekt den Einfluss des Klimawandels auf die potentielle Etablierung von Temperatur-toleranteren, nicht-endemischen Cyanobakterien (Xeno-Cyano) und deren Parasiten (Xeno-Parasiten) in antarktischen Gebieten und welche Konsequenzen dies für das antarktische Cyanomatten-Ökosystem hat. Wir konnten durch frühere Experimente den Einfluss von erhöhter Temperatur auf die Artendiversität und Toxinproduktion in antarktischen Cyanomatten nachweisen (Kleinteich et al. 2012). Da antarktische Gebiete einem kontinuierlichen Verlust der Eisdecke ausgesetzt sind, liegt die Vermutung nahe, dass nicht-endemische Cyanobakterien bisher unbesiedelte Gebiete erschließen bzw. werden endemische Cyanobakterien aufgrund ihrer schlechteren Anpassung an nicht-endemische Parasiten aus bereits besiedelten Gebieten verdrängt. Entsprechend hat dieses Projekt vier Hauptziele: Fest zu stellen ob 1.) sich in historischen Cyanomatten (1902, Scott Expedition) und den letzten 30 Jahren (1990, 1999/2000, 2010, 2021/2022) aus Rothera, Byers Halbinsel und McMurdo diese Xeno-Cyano und -Parasiten nachweisen lassen; 2.) Cyanomatten aus Spitzbergen eine vergleichbare Speziesverteilung (Cyanobakterien, Viren und Pilze) aufweisen wie auf der antarktischen Halbinsel (vermuteter Haupteintragungsort arktischer Spezies über Aerosole oder Vögel); 3.) eine Temperaturerhöhung durch Plexiglasabdeckung in den Cyanomatten auf Rothera und Byers zu einer Veränderung der Cyanodiversität, Toxinproduktion und verstärkt Parasitierung durch Viren und Pilze führt; und 4.) die Infektion mit arktischen Cyanomatten und Temperaturerhöhung bei antarktischen Cyanomatten im Labor nachweislich zu Veränderungen der endemischen Cyanomattendiversität führt. Die Diversitätsanalyse der Cyanomatten erfolgt durch Illumina (16S, ITS, g20 Gene) und Shotgun Sequenzierung. Die Abundanz von Viren und Pilzen wird durch ddPCR bestimmt und der Nachweis der Cyanotoxine erfolgt durch PCR, ELISA und UPLC-MS/MS. Die erhobenen Daten dürften die Eroberung und hiermit profunde voranschreitende Veränderung des antarktischen Cyanomattensystems durch nicht-endemische Spezies nachweisen. Durch die SARS-Cov2 Pandemie konnte die Hypothese, dass Vögel die Vektoren von Cyanomatten-Material sind, nicht getestet werden. Dennoch werden wir Cyanomatten aus unmittelbarer Nähe zu Vogelnistplätzen in Spitzbergen untersuchen. GPS-tracking Daten sollten mögliche Zusammenhänge zwischen Vogelmigration und der Verbreitung nicht-endemischer Cyanos und ihrer Parasiten aufdecken.
Das unvollständige Verständnis der Wechselwirkung von Aerosolpartikeln mit Strahlung, Wolken und Niederschlag ist eine Schlüsselfrage der Atmosphärenforschung. Detaillierte Beobachtungen sind erforderlich, um die komplexen Zusammenhänge zwischen den beteiligten Prozessen zu erfassen. Dies gilt insbesondere für die abgelegene Region der Antarktis, wo bodengestützte, vertikal aufgelöste Langzeitbeobachtungen von Aerosol, Wolken und Niederschlag selten sind und Satellitenbeobachtungen technischen Beschränkungen unterliegen. Um die Messlücke mit modernsten Beobachtungen zu schließen, wird TROPOS die Messplattform OCEANET-Atmosphere zwischen den Südsommern 2022/23 und 2023/24 an der Station Neumayer III (70,67°S, 8,27°W) einsetzen. OCEANET-Atmosphere ist ein autonomer, polar-erprobter, modifizierter 20-Fuss-Messcontainer, der erst kürzlich erfolgreich während MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) eingesetzt wurde. Die Instrumentierung während COALA umfasst ein Mehrwellenlängen-Polarisations- und ein Doppler-Lidar, ein 35-GHz-Wolkenradar, ein Mikrowellenradiometer sowie jeweils ein 1-d und 2-d-Niederschlags-Disdrometer. OCEANET ist die einzige polare Einzelcontainer-Plattform, die mit Mehrwellenlängen-Lidar, Radar und Mikrowellenradiometer Wolken und Niederschlag sowie mit Doppler-Lidar und -Radar turbulente Luftbewegungen in Wolken an verschiedenen Messstandorten beobachten kann.Die zeitliche und vertikale Auflösung des gewonnenen Datensatzes wird in der Größenordnung von 30 s (2 s für Vertikalgeschwindigkeitsbeobachtungen) und 30 m liegen. COALA ist ein 3-Jahres-Projekt. Ein Postdoktorand wird für den Einsatz von OCEANET-Atmosphere bei Neumayer III und die Datenanalyse verantwortlich sein und dabei von Experten am TROPOS unterstützt. Die Beobachtungen werden in erster Linie dazu dienen, die Schlüsselhypothese von COALA zu untersuchen, dass Aerosol aus dem Südlichen Ozean, den mittleren Breiten und den Subtropen der südlichen Hemisphäre in die Antarktis transportiert wird, wo es die Bildung und Entwicklung von Wolken und Niederschlag beeinflusst. Die Arbeiten konzentrieren sich auf (1) die Untersuchung des Ursprungs, der Häufigkeit und der Eigenschaften des Aerosols über der Station Neumayer III, (2) die Untersuchung des Einflusses von Oberflächen- und Grenzschicht-Kopplungseffekten auf die Eigenschaften und die Entwicklung von tiefen Wolken, (3) die Untersuchung des Beitrags von Dynamik (orographische Wellen), Aerosol und Meteorologie zur Verteilung der Eis- und Flüssigphase in Wolken über Neumayer III, (4) zur Untersuchung der vertikalen Struktur von Wolken und ihrer Beziehung zur Niederschlagsbildung und (5) zur Bewertung regionaler Kontraste in den Eigenschaften von Aerosolen und Wolken und den damit verbundenen Aerosol-Wolken-Wechselwirkungsprozessen, indem die Neumayer-III-Beobachtungen von vorhandenen Datensätzen aus Südchile, Zypern, Deutschland und der Arktis kontrastiert werden.
In Wüstenökosystemen wird die zeitliche Dynamik durch Nass-Trocken-Zyklen bestimmt, und diese werden durch den Klimawandel zunehmend gestört. Niederschläge in Wüstenökosystemen lösen einen unmittelbaren CO2-Anstieg aus, verbunden mit erheblichen Emissionen von Petrichor, dem "Geruch von Regen". Dieser erdige Geruch setzt sich aus verschiedenen flüchtigen organischen Verbindungen (VOC) zusammen, die mit dem Wind über große Entfernungen transportiert werden. Die Wassertröpfchen, die mit trockenen Böden in Berührung kommen, setzen zuvor gebundene VOCs frei und regen Bakterien und Pilze zur Neuproduktion von VOCs an. Sechzig Jahre nach der ersten Beschreibung von Petrichor ist immer noch wenig über seine Rolle in der Bodenökologie und seine Bedeutung für die Atmosphärenchemie bekannt.Biotische Interaktionen zwischen Mitgliedern mikrobieller Gemeinschaften im Boden erfolgen durch den Austausch von Signalmolekülen. Flüchtige Signale wirken auf einer größeren räumlichen Skala als lösliche Verbindungen und werden zunehmend als entscheidende Infochemikalien zur Vermittlung von intra- und interspezifischen Interaktionen zwischen Bodenmikrobiota anerkannt. Dennoch ist wenig über die spezifischen Funktionen von VOCs und ihre Rolle bei der Vermittlung von Wechselwirkungen zwischen Organismen bekannt, insbesondere in Trockengebieten.Die Emissionen von Petrichor aus Trockengebieten wie der Negev-Wüste (Israel) werden sich in naher Zukunft verändern, da die Niederschlagsmenge bis 2050 voraussichtlich um ~40 % zunehmen wird. Biogene flüchtige organische Verbindungen (VOC) - insbesondere Terpenoide und Benzoide - sind als wesentliche Akteure der Atmosphärenchemie bekannt und beeinflussen das Klima durch Wolkenbildung und die Entstehung sekundärer organischer Aerosole die Strahlungsenergie absorbieren und streuen. Mikrobielle Bodengemeinschaften dominieren die Wüstenökosysteme, die sich über 20 % der Erdoberfläche erstrecken. Daher ist es dringend erforderlich, die Rolle der mikrobiellen Gemeinschaften im Wüstenboden für die Chemie der Atmosphäre zu untersuchen. Unser Ziel ist es, die Quellen, Regulierungsmechanismen und Kontrollfaktoren der VOC-Emissionen in Wüstenökosystemen zu verstehen, was für die Erstellung umfassender globaler Klimaprojektionsmodelle von größter Bedeutung ist. Zu diesem Zweck wollen wir Veränderungen in der Petrichor-Zusammensetzung entlang eines Trockenheitsgradienten in der Negev-Wüste (Israel) quantifizieren und charakterisieren, die gesamte aktive mikrobielle Gemeinschaft (Eukaryonten, Prokaryonten, Archaeen) nach Niederschlagsereignissen in den Biokrusten der Wüste und in tieferen Bodenschichten identifizieren, mit Hilfe von Netzwerkanalysen Kandidaten für die Produktion von und die Reaktion auf VOC ermitteln und die Rolle der VOC durch Experimente mit mikrobiellen Isolaten und durch die Anwendung von Inhibitoren der wichtigsten Petrichor-VOC in Böden verifizieren und die globalen Auswirkungen der Petrichor-Emissionen hochskalieren.
Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.
Die Ueberwachung der Beta-Aktivitaet von Aerosolen, die von kerntechnischen Anlagen emittiert werden, ist fuer den Umweltschutz von grosser Bedeutung. Zur Messung der Beta-Aktivitaet sowohl im Normalbetrieb als auch im Stoerfall muss ein Messsystem einen Messbereich von etwa 8 Groessenordnungen umfassen. Um den Erforderungen der Ueberwachung zu entsprechen, sollte ein solches System preiswert in Herstellung und Betrieb sein und dem modernen Automatisierungsstandard entsprechen. Das Drehfiltersystem sammelt im 24 h-Zyklus Aerosolproben. Mit drei Detektoren werden die Beta-Aktivitaet der Aerosolprobe waehrend der Probenahme, das Abklingverhalten der Aktivitaet unmittelbar nach der Probenahem und die Aktivitaet langlebiger Nuklide nach Zerfall der kurzlebigen Isotope ermittelt. Die Messergebnisse werden rechnergestuetzt hinsichtlich der natuerlichen und kuenstlichen Radioaktivitaet analysiert. Die Analyse der Zerfallskurve ergibt bereits 3 h nach der Probenahme erste Hinweise auf langlebige kuenstliche Nuklide, die mit den bisher angewandten Verfahren erst nach 20 Tagen nachweisbar waren. Nach der Erprobung des Prototyps befindet sich zur Zedit ein Ueberwachungssystem im Aufbau, das aus mehreren Drehfiltermessstationen und einem Leitrechner zur zentralen Datenerfassung und -auswertung besteht.
Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.
Seit 1992 und dem ersten Erdgipfel haben verschiedene Länder erkannt, dass durch menschliche Aktivitäten das Klima stark beeinflusst wird, und sie planten, dieses Problem im Rahmen einer internationalen Konvention anzugehen. So brachten COPs (Conference of parties) viele Länder unter der Schirmherrschaft der Vereinten Nationen zusammen, um sich gegenseitig zu verpflichten, dieses Problem zu lösen. Bevor jedoch sinnvolle Maßnahmen ergriffen werden können, ist es wichtig, dass sich Wissenschaftler auf der ganzen Welt zusammentun, um für die Politik nützlichen Daten bereitzustellen. In diesem Zusammenhang wird das REACTE-Projekt vorgeschlagen, an dem international anerkannte französische und deutsche Forscher in jeweils sehr komplementären wissenschaftlichen Bereichen tätig sind.Die Atmosphäre ist ein komplexes und hoch reaktives System, in dem viele bio-physikochemische Prozesse ablaufen. Deshalb ist es von entscheidender Bedeutung, dieses System gut zu verstehen und zu wissen, wie es sich als Reaktion auf die verschiedenen Belastungen entwickelt, denen es ausgesetzt ist. Einer der wichtigsten Punkte ist daher die Kenntnis der Reaktionsfähigkeit eines solchen Systems in Abhängigkeit von den vorhandenen Spezies. Redoxreaktionen gehören zu den wichtigsten Transformationspfaden, die berücksichtigt werden müssen, um die Entwicklung der Atmosphäre besser zu verstehen. Das REACTE-Projekt konzentriert sich auf die (Photo-) Chemie von Übergangsmetallen (TMIs), die eine Hauptquelle für hochreaktive Spezies in Aerosolen und der wässrigen Phase troposphärischer Wolken darstellt. Tatsächlich gibt es derzeit nur sehr wenige Daten über die genaue Rolle und Reaktivität dieser Metalle, die derzeit fast ausschließlich in freier Form betrachtet werden, während bekannt ist, dass sie in natürlicher Umgebung als Komplexe vorliegen. Das REACTE-Projekt konzentriert sich auf die Beantwortung folgender Fragen: i) Wie beeinflusst die Komplexierung von TMIs deren Photoreaktivität, deren Redoxreaktionen und/oder die "Fenton"-Typ-Reaktionen mit H2O2? ii) Welche reaktiven Spezies werden mit diesen Reaktionen assoziiert, H2O2, HyOx Radikale und ihre jeweiligen Bildungsausbeuten? Welchen Einfluss haben sie auf die Oxidationskapazität der Atmosphäre und damit auf die chemische Zusammensetzung im Allgemeinen? Diese Ergebnisse werden in einen Modellmechanismus zu Prozessierung von chemischen Radikalreaktionen in wässriger Phase (CAPRAM) implementiert werden, um den Einfluss auf die Transformation organischer Stoffe, die HOx-Bilanz und den Oxidationszustand von TMIs in atmosphärischen Tröpfchen oder Aerosolen vorherzusagen. Das REACTE-Projekt verbindet komplementäre wissenschaftliche Kompetenzen, und ermöglicht damit die TMIs-Komplexchemie besser zu verstehen, sowie ihren Einfluss auf die Atmosphärenchemie zu erfassen. Es wird Daten liefern, um die Auswirkungen auf das Klima bzw. auf die Luftverschmutzung zu verstehen und abzuschätzen, welche derzeit stark unterschätzt werden.
Im Klimasystem der Arktis spielen Aerosolpartikel eine bedeutende Rolle für das Verständnis der schnellen Erwärmung. Durch die niedrige Hintergrundkonzentration sind lokale Neubildungs-Ereignisse eine wichtige Quelle, und können signifikant zu Wolkenkondensationskeimen beitragen. Aufgrund der schweren Erreichbarkeit gibt es insbesondere wenig Messungen zur vertikalen Verteilung von Aerosolpartikeln in der Arktis. Die Aerosol-Konzentration ist stark variabel in Raum und Zeit, und daher schwierig in Modellen abzubilden. Räumliche Verteilung und zeitliche Variabilität auf kleinen Skalen hängen von den Umgebungsbedingungen ab, wie der Stabilität der Atmosphäre, Wolken, Orographie und Oberflächeneigenschaften. Daher untersucht das Projekt AIDA (Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis) die kleinskalige Variabilität am Standort Ny-Alesund in Spitzbergen, einem natürlichen Labor von kleinskaligen Kontrasten in den Umgebungsbedingungen, mit einer Kombination von zeitgleichen Fesselballon- und Drohnen-Messungen, die in die bestehenden, kontinuierlich messenden Observatorien in Ny-Alesund und auf dem Zeppelinberg eingebettet werden. Die Messungen sind für die Übergangszeit zwischen Arktischem Dunst mit überwiegend Ferntransport im Frühling und überwiegend lokal gebildeten Aerosolpartikeln im Sommer geplant. Drohne und Fesselballon sind mit ähnlichen Aerosol-Sensoren ausgerüstet: Die wichtigsten Messgeräte sind dabei jeweils zwei parallel betriebene Kondensationskernzähler mit unterschiedlicher unterer Nachweisgrenze im Größenbereich 3-20 nm, um neu gebildete Aerosolpartikel nachzuweisen. Ein leichtes Aerosol-Größenspektrometer kommt zum ersten Mal auf dem Ballon zum Einsatz, um die Aerosol-Größenverteilung zwischen 8 und 300 nm zu messen. Außerdem sind Sensoren für größere Aerosolpartikel implementiert, um die Neubildung von Aerosolpartikeln in Abhängigkeit von bereits existierendem Aerosol und dem Beitrag von Ferntransport zu untersuchen. Temperatur und Feuchte werden mit hoher zeitlicher Auflösung gemessen, um den Einfluss von Stabilität und vertikaler Durchmischung zu charakterisieren. Der dreidimensionale Windvektor wird gemessen, da das lokale Windfeld sehr stark von der lokalen Orographie geprägt ist. Es wird erwartet, dass die kleinskalige Variabilität der thermodynamischen Bedingungen einen signifikanten Einfluss auf die Neubildung und das Wachstum von neu gebildeten Aerosolpartikeln hat. Die Daten der horizontalen und vertikalen Verteilung der Aerosol-Partikel werden anschließend analysiert in Zusammenarbeit mit den Partnern, die komplementäre Mess-Systeme in Ny-Alesund, auf dem Zeppelin-Berg und an anderen arktischen Standorten betreiben. Die Ergebnisse tragen bei zu einem besseren Verständnis der kleinskaligen Verteilung von Aerosolpartikeln, deren Entstehung, Wachstum und vertikalen Transportprozesse.
| Origin | Count |
|---|---|
| Bund | 1872 |
| Europa | 1 |
| Land | 235 |
| Wissenschaft | 70 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 13 |
| Daten und Messstellen | 55 |
| Ereignis | 6 |
| Förderprogramm | 1547 |
| Gesetzestext | 13 |
| Repositorium | 3 |
| Text | 106 |
| Umweltprüfung | 4 |
| unbekannt | 251 |
| License | Count |
|---|---|
| geschlossen | 171 |
| offen | 1810 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 1610 |
| Englisch | 562 |
| Resource type | Count |
|---|---|
| Archiv | 20 |
| Bild | 11 |
| Datei | 219 |
| Dokument | 223 |
| Keine | 1352 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webdienst | 10 |
| Webseite | 348 |
| Topic | Count |
|---|---|
| Boden | 1360 |
| Lebewesen und Lebensräume | 1383 |
| Luft | 1608 |
| Mensch und Umwelt | 1985 |
| Wasser | 1524 |
| Weitere | 1985 |