Zuchtarbeiten zur Entwicklung von kasachischem Löwenzahn (Taraxacum koksaghyz) als nachwachsender Industrierohstoff mit Mehrfachnutzung (Kautschuk, Inulin) sollen weitergeführt werden. Ziele des Vorhabens sind weitere Selektionsschritte im Pflanzenmaterial unter Nutzung unterstützender und beschleunigender Zuchtmethodik (Molekulare Marker, Biomarker, In vitro-Techniken, NMR-Analytik). Ferner soll Saatgut für weitere Vermehrungen gewonnen sowie Wurzeln zur Extraktion von Kautschuk und Inulin geerntet werden. Die Extrakte werden im Pilotmaßstab weiter bearbeitet. Rohstoffchargen sollen bereitgestellt und ihre technischen und physikochemischen Eigenschaften beurteilt werden. In spaltenden Taraxacum koksaghyz Populationen sollen genetische Analysen für agronomisch und metabolomisch relevante Merkmale durchgeführt werden. Isoprenoide und Inulin sollen NMR-analytisch erfasst werden. Selektierte Genotypen sollen in vitro vermehrt, z.T. polyploidisiert sowie in vitro beschleunigt zur Blüte gebracht werden. Sequenzen der Schlüsselgene relevanter Stoffwechselwege sollen als Selektionsmarker eingesetzt und weitere Marker zur Spezies-Identifikation sowie zur markergestützten Rückkreuzung eingesetzt werden. Verschiedene Taraxacum-Arten und daraus hergestellte Bastarde sollen in ihren agronomischen Eigenschaften züchterisch verbessert und letztendlich als Industrierohstoff bereitgestellt werden. Saatgut und Wurzeln werden auf Praxisflächen erzeugt.
Um Züchtungsstrategien für zukünftige Klimabedingungen zu entwickeln, ist ein grundlegendes Verständnis von phänotypischen und metabolischen Adaptionsmechanismen von Gerste unter möglichst realistischen Trocken- und Hitzestressbedingungen erforderlich. In dem Projekt CLIMATE CHANGE werden zunächst Klimamodelle erstellt. Diese Modelldaten werden in Klimakammern übertragen, um realistische Stressszenarien zu simulieren, unter denen ein Core Set von 100 genetisch möglichst divergenten Zuchtstämmen heranwächst. Dieses Core Set wird aus Illumina iSELECT Daten von 750 aktuellen Gerstenlinien zusammengestellt und auf Veränderungen des Primär-, Sekundärstoffwechsels, Phytohormonhaushalt, Osmoprotektantien und Antioxidantien unter den modellierten Hitze- und Trockenstress mittels flüssigkeitschromatographischer und massenspektroskopischer Methoden hin untersucht. Phänotypische Daten werden parallel in den Klimakammern und an verschiedenen Trockenstandorten in Deutschland erhoben und zusammen mit den Metabolitdaten mittels der Methoden der Assoziationsgenetik zusammengeführt. Weiterhin werden in den Klimakammerversuchen genomabdeckende Expressionsprofile (44 K Agilent Array) von trocken- und hitzestresssensitiven und -toleranten Genotypen vergleichend durchgeführt, um stressrelevante Co-regulationen zu identifizieren. CLIMATE CHANGE zielt darauf ab, genetische Assoziationsstudien einer dem jetzigen agronomischen Leistungsstand entsprechenden Gerstenpopulation unter definierten Klima-Modellszenarien durchzuführen (incl. 192 exotische Gerstenlinien aus ariden Gebieten). Diese Daten werden auf einen SNP BeadXpress array als neue Markerplattform zusammengefasst.
Ziel dieser Arbeit ist es, die Möglichkeiten und Grenzen der Anwendung von PM&E in der partizipativen Agrar- und Ressourcenmanagementforschung zu analysieren, und Erkenntnisse über fördernde sowie hemmende Einflussfaktoren in der Umsetzung dieses Konzepts zu gewinnen. Die Ergebnisse sollen insbesondere Forschern, aber auch Gebern und Praktikern eine realistischere Einschätzung des potentiellen Nutzens von PM&E in der Forschung ermöglichen und ihnen Entscheidungshilfen bei der Planung und Gestaltung partizipativer Forschungsvorhaben bieten. Ergebnisse: In beiden Vorhaben unterschieden sich die von den lokalen Gruppen bevorzugten Indikatoren von den M&E Inhalten auf Projektebene: während das Hauptinteresse der Agroforstkooperative und der lokalen Agrarforschungskomitees sich auf die Verfolgung wirtschaftlicher Ziele und gruppeninterner Prozesse richtete (durchgeführte Aktivitäten, Buchführung, Kreditrückzahlung, etc.), konzentrierte das Projektmonitoring von AFOCO und IPCA sich auf entwicklungspolitisch relevante Wirkungen (Gender, Humankapitalentwicklung, Partizipation etc.). Letzteres diente nicht nur als Informationsbasis für die Rechenschaftslegung gegenüber den Auftraggebern, sondern zugleich der Verfahrensforschung, d.h. der Ableitung methodischer Erkenntnisse für verbesserte Förderungsansätze in der kommunalen Forstwirtschaft bzw. der lokalen Agrarforschung. Durch die Initiierung zielgruppeneigener M&E Systeme traten unterschiedliche Blickwinkel und Erfolgskriterien auf Projekt- und Zielgruppenebene deutlicher zutage. Darüber hinaus wurden die gruppeneigenen M&E Systeme von den beteiligen Akteuren beider Vorhaben im Hinblick auf einen verbesserten Informationsfluss, erhöhte Transparenz, das Erlernen neuer Managementfähigkeiten sowie die regelmäßige Dokumentation teilweise neuartiger Information positiv beurteilt. Anhand des bisweilen schwierigen Implementierungsprozesses wurde aber auch deutlich, dass bei dem gewählten Ansatz viele der für konventionelles Monitoring typischen Probleme auftraten, z.B. die Vernachlässigung von M&E angesichts anderer scheinbar dringlicherer Aufgaben, eine unzureichende Analyse und Nutzung der Ergebnisse, Schwierigkeiten im Umgang mit prekärer Information, etc. Darüber hinaus kamen typische durch den partizipativen Ansatz bedingte Risiken und Schwierigkeiten hinzu, wie z.B. strategische Kommunikation, eine Fokussierung auf Gruppen unter Vernachlässigung der nicht organisierten Bevölkerung, die Errichtung einer 'Bühne', die von Prozessen 'hinter den Kulissen' ablenkt, sowie bestehende Machtgefüge, die den Partizipationsgedanken teilweise untergraben. Wichtige Grundlagen für ein Funktionieren von PM&E waren nicht nur ausreichende Ressourcen und geeignete sozio-kulturelle und institutionelle Rahmenbedingungen, sondern auch funktionierende lokale Organisationen, Flexibilität und Handlungsspielraum zur Korrektur der identifizierten Schwierigkeiten und ein gewisses Maß and Kontinuität. Unerlässlich war zudem die Wahl
Das wachsende Missverhältnis zwischen globalem Energieverbrauch und dem Vorrat an fossilen Energieträgern führt dazu, dass Energie verstärkt auch aus Pflanzenbiomasse gewonnen wird. Problematisch ist dabei die zunehmende Konkurrenz zwischen der Produktion von Energiepflanzen und der Produktion von Futter- bzw. Nahrungsmitteln. Eine Kaskadennutzung von Kulturarten kann diese Konkurrenz entschärfen. Darüber hinaus ist es wichtig, die Energieproduktion aus Biomasse so nachhaltig wie möglich zu gestalten. Dafür ist der Nettoenergieertrag je Flächeneinheit eine entscheidende Größe. Ein attraktiver Ansatz, den Energieertrag zu steigern, liegt in der züchterischen Verbesserung der Nährstoffnutzungseffizienz von Kulturarten. Damit könnte zum Beispiel der Einsatz mineralischer Stickstoffdünger reduziert werden, der energieintensiv über das Haber-Bosch-Verfahren synthetisiert werden muss. Die Kulturart Triticale (×Triticosecale Wittmack) ist hervorragend für eine nachhaltige Bioenergieproduktion geeignet, da selbst unter Low-Input-Bedingungen hohe Biomasseerträge erzielt werden können und eine breite genetische Variation für Biomasseertragspotential im aktuellen Zuchtmaterial vorhanden ist. Das geplante Verbundvorhaben zielt darauf ab, die Stickstoffnutzungseffizienz von Triticale mittels Breeding by DesignTM unter Berücksichtigung einer Kaskadennutzung von Kornertrag und Restpflanzenbiomasse zu steigern. Der Flaschenhals bei der Umsetzung des Konzepts Breeding by DesignTM besteht in der ungenügenden Kenntnis über die molekulare Basis komplexer Merkmale. Dies liegt vor allem daran, dass geeignete Phänotypisierungstechniken fehlen, mit denen kosten- und zeiteffizient die Dynamik agronomisch relevanter Merkmale untersucht werden kann. In Arbeitspaket A soll dieser Flaschenhals geweitet werden, indem eine Phänotypisierungsplattform entwickelt wird, die aus einem flexiblen Trägerfahrzeug mit intelligenten Sensorsystemen besteht. Weiterhin etablieren wir im Rahmen des Arbeitspakets A Methoden, die eine schnelle Erfassung von Restpflanzenbiomasse ermöglichen. In Arbeitspaket B wird die entwickelte Phänotypisierungsplattform dazu eingesetzt, die molekulare Basis von Stickstoffnutzungseffizienz aufzuklären. Mithilfe moderner Designs zur QTL-Kartierung mit Mehrlinienkreuzungen werden Genomregionen identifiziert, die für das dynamische Merkmal Stickstoffnutzungseffizienz im Hinblick auf eine Kaskadennutzung von Kornertrag und Restpflanzenbiomasse kodieren. Die Kenntnisse über die genetische Architektur der Stickstoffnutzungseffizienz bilden die Grundlage für eine wissensbasierte Züchtung und ermöglichen es, den Zuchtfortschritt bei Energie-Triticale zu beschleunigen. Um diese ambitionierten Ziele zu erreichen, bündeln wir Kompetenzen aus den Bereichen Ingenieurwissenschaften, Landtechnik und angewandte Pflanzenzüchtung.
Ziel des Vorhabens ist die Identifizierung von Stoffwechsel-Prozessen und von Leitgenen, die positiv mit einer hohen Biomassenproduktion bei der C4-Pflanze Mais korrelieren, und deren experimentelle Überprüfung in einer genetisch und phänotypisch diversen Mais-Population. Im Rahmen des Vorhabens sollen physiologische, biochemische und molekulare Daten in einem reduktionistischen Ansatz mit landwirtschaftlich relevanten Parametern korreliert werden. Hierzu werden gut charakterisierte Maislinien, die sich in ihren Ertragseigenschaften signifikant unterscheiden, unter fünf verschiedenen, für die Landwirtschaft relevanten Umweltbedingungen kultiviert und zu unterschiedlichen Entwicklungsstadien detailliert inventarisiert. Die mathematische Modellierung der gefundenen experimentellen Daten wird anschließend zur Identifizierung von Leitgenen und von Stoffwechselwegen bzw. zellulären Prozessen herangezogen, die unter diesen Bedingungen mit erhöhtem Biomasse-Ertrag korrelieren. Die Validierung dieser Parameter und die Optimierung der mathematischen Modelle erfolgt dann in einer Mais-Population mit hoher genetischer und phänotypischer Diversität. Durch Rückkopplung mit den Vorhersagen erfolgt die Optimierung der mathematischen Modelle. In diesem Projekt wird ein neuartiges Konzept zur Untersuchung der Ertragsbildung direkt in der Nutzpflanze Mais vorgeschlagen. Dies soll zur Identifizierung von Biomarkern und neuen Leitgenen führen. Beides sind wichtige Elemente für die moderne Pflanzenzüchtung sowohl im Bereich der konventionellen als auch der gentechnischen Züchtung. Es wird daher erwartet, dass eine patentrechtliche Sicherung derartiger neuer, innovativer Erkenntnisse für die Projektpartner möglich sein wird. Die gewerbliche Nutzung soll in enger Zusammenarbeit mit dem Industriepartner gewährleistet werden.
Zuchtarbeiten zur Entwicklung von kaukasischem Löwenzahn (Taraxacum koksaghyz) als nachwachsender Industrierohstoff mit Mehrfachnutzung (Kautschuk , Inulin) sollen weitergeführt werden. Ziele des Vorhabens sind weitere Selektionsschritte im Pflanzenmaterial unter Nutzung unterstützender und beschleunigender Zuchtmethodik (Molekulare Marker, Biomarker, In vitro-Techniken, NMR-Analytik). Ferner soll Saatgut für weitere Vermehrungen gewonnen sowie Wurzeln zur Extraktion von Kautschuk und Inulin geerntet werden. Die Extrakte werden im Pilotmaßstab weiter bearbeitet. Rohstoffchargen sollen bereitgestellt und ihre technischen und physikochemischen Eigenschaften beurteilt werden. In spaltenden T. koksaghyz-Populationen sollen genetische Analysen für agronomisch und metabolisch relevante Merkmale durchgeführt werden. Isoprenoide und Inulin sollen NMR-analytisch erfasst werden. Selektierte Genotypen sollen in vitro vermehrt, z.T. polyploidisiert sowie in vitro beschleunigt zur Blüte gebracht werden. Es werden Selektionsmarker eingesetzt. Verschiedene Taraxacum-Arten und daraus hergestellte Bastarde sollen in ihren agronomischen Eigenschaften züchterisch verbessert und letztendlich als Industrierohstoff bereitgestellt werden. Saatgut und Wurzeln werden auf Praxisflächen erzeugt. Die gummi- und zucker-verarbeitenden Industrien erwarten aus dem Projekt anbauwürdige, ertragreiche T. koksaghyz-Sorten. Der beteiligte Züchter strebt dabei eine Profilierung in Sonderkulturen sowie Lizenzeinnahmen aus der Saatgutproduktion an. Die Universität Münster und das JKI streben Publikationen an. Die Universität Münster strebt Lizenzeinnahmen aus der Nutzung von Patenten an. Das beteiligte in vitro Labor strebt eine Profilierung in Asteraceen an und erwartet Dienstleistungsaufträge. Das beteiligte Analytik-Unternehmen strebt eine weitere Profilierung in der NMR-Analytik pflanzlicher Inhaltsstoffe an. Die Erzeugergemeinschaft erwartet Absatzmöglichkeiten für Saatgut und Wurzeln.
Vorhabensziel Zuchtarbeiten zur Entwicklung von kasachischem Löwenzahn (Taraxacum koksaghyz) als nachwachsender Industrierohstoff mit Mehrfachnutzung (Kautschuk, Inulin) sollen weitergeführt werden. Ziele des Vorhabens sind weitere Selektionsschritte im Pflanzenmaterial unter Nutzung unterstützender und beschleunigender Zuchtmethodik (Molekulare Marker, Biomarker, In vitro-Techniken, NMR-Analytik). Ferner soll Saatgut für weitere Vermehrungen gewonnen sowie Wurzeln zur Extraktion von Kautschuk und Inulin geerntet werden. Die Extrakte werden im Pilotmaßstab weiter bearbeitet. Rohstoffchargen sollen bereitgestellt und ihre technischen und physikochemischen Eigenschaften beurteilt werden. Arbeitsplanung In spaltenden Taraxacum koksaghyz Populationen sollen genetische Analysen für agronomisch und metabolomisch relevante Merkmale durchgeführt werden. Isoprenoide und Inulin sollen NMR-analytisch erfasst werden. Selektierte Genotypen sollen in vitro vermehrt, z.T. polyploidisiert sowie in vitro beschleunigt zur Blüte gebracht werden. Sequenzen der Schlüsselgene relevanter Stoffwechselwege sollen als Selektionsmarker eingesetzt und weitere Marker zur Spezies-Identifikation sowie zur markergestützten Rückkreuzung eingesetzt werden. Verschiedene Taraxacum-Arten und daraus hergestellte Bastarde sollen in ihren agronomischen Eigenschaften züchterisch verbessert und letztendlich als Industrierohstoff bereitgestellt werden. Saatgut und Wurzeln werden auf Praxisflächen erzeugt.
Origin | Count |
---|---|
Bund | 26 |
Type | Count |
---|---|
Förderprogramm | 26 |
License | Count |
---|---|
offen | 26 |
Language | Count |
---|---|
Deutsch | 26 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 12 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 20 |
Lebewesen und Lebensräume | 26 |
Luft | 8 |
Mensch und Umwelt | 26 |
Wasser | 7 |
Weitere | 26 |