Wasser aus Talsperren ist in vielen Länder eine der wichtigsten Trinkwasserresourcen. Dies gilt besonders für aride Zonen, und/oder in Ländern mit hoher Bevölkerungsdichte. Allerdings sind diese Gewässer oftmals durch einen extrem euthrophen Zustand gekennzeichnet. Das Ziel dieses Projektes ist es, den Gewässergütezustand zu beschreiben, den derzeitigen Zustand der Gewässer in Hinblick auf Nährstoffgehalte und organische algenbürtige Schadstoffe zu erfassen, Ursachen, die zu einer Algenblüte führen zu bestimmen und Verfahren für die Aufbereitung zu Trinkwasser zu entwickeln. Dazu soll der Gütezustand ausgewählter Gewässer in den drei Ländern der Projektpartner (Deutschland, Israel, Jordanien) verglichen werden. Der Einfluss unterschiedlicher klimatischer Bedingungen (Mitteleuropa, Mittlerer Osten) und die unterschiedliche Nutzung der Gewässer auf deren Eutrophierung soll dabei besonders beachtet werden. Die klassischen Aufbereitungsverfahren Filtration, Adsorption, Oxidation und Desinfektion sollen auf die algenspezifische Rohwasserqualität optimiert werden. Die Ergebnisse werden sowohl hinsichtlich ökologischer Gesichtspunkte als auch hinsichtlich der Wassernutzung ausgelegt werden. Die Untersuchungen werden jeweils in Modellsystemen im Labormaßstab und im Technikumsmaßstab mit Realproben durchgeführt. Ein Probenaustausch ermöglicht die Bestimmung der unterschiedlichsten Parameter in den einzelnen Laboratorien der Projektpartner. Dazu gehört auch ein Austausch von Doktoranden, die Schulung von Mitarbeitern und die Durchführung von gemeinsamen Workshops.
Es sind eine Reihe von anaeroben Prozessen bekannt, die alle mehr oder weniger stark den Aspekt der Behandlung bzw. Entsorgung fester, pastoeser oder fluessiger Abfaelle in den Vordergrund stellen. Das Spektrum der Anlagengroesse reicht von Kleinanlagen fuer die Guelleverwertung bis zu grosstechnischen Anlagen. Allen Aufbauprinzipien gemeinsam ist die Tatsache, dass die Anlagengroesse nur schwierig an Rahmenbedingungen wie Groesse der zu entsorgenden Gebietskoerperschaft oder Ergiebigkeit der Substratquelle angepasst werden kann; up-scaling (oder auch down-scaling) erfordert immer Entwicklungstaetigkeit. Dadurch sind Anlagen entweder nicht voll ausnutzbar oder andere Anlagen muessen vorgehalten werden, um Ent- oder Versorgungssicherheit zu gewaehrleisten. Unter Umstaenden muessen lange Transportwege akzeptiert werden. Diese Probleme wirken sich negativ auf die Wirtschaftlichkeit des Einsatzes der Verfahren aus. Daher wird oft auf die Gewinnung von Biogas verzichtet, obwohl die Rahmenbedingungen gut waeren. Dies bedeutet, dass eine wichtige Quelle regenerativer Energie praktisch nicht genutzt wird. Ziel dieses Projektes ist die Entwicklung eines modularen Konzeptes fuer Anaerobreaktoren, das eine Anpassung der Anlagengroesse ohne besondere Entwicklungstaetigkeit erlaubt. Dazu bedarf es der Entwicklung kleiner Reaktoren, die einfach aufzubauen und preiswert herzustellen sind, die dennoch stabil arbeiten und keine aufwendige Regelungstechnik brauchen. Beabsichtigtes Einsatzfeld fuer die Reaktoren ist dabei nicht nur die Behandlung und Entsorgung von Abfaellen, die gleichwohl mit den entwickelten Komponenten moeglich sein sollte, sondern vor allem die Bereitstellung nachhaltiger Energiequellen. Fernziel der Arbeiten des Labors fuer Umwelttechnik der MFH in dieser Richtung ist die Kombination von Anaerobprozessen mit der Biomassegewinnung durch Algen, d.h. direkte Biogasgewinnung aus Solarenergie und CO2-Recycling.
In Nahrungsnetzen kontrollieren sowohl bottom-up (Ressourcen) als auch top-down Faktoren (Fraß durch höhere trophische Ebenen) die Biomasse intermediärer Stufen wie z. B. benthischer Algen (Periphyton). Die Wichtigkeit beider Mechanismen konnte gezeigt werden; allerdings scheint die Stärke der top-down Kontrolle in verschiedenen natürlichen Systemen stark zu variieren und die Faktoren, welche die Stärke der top-down Kontrolle bestimmen, sind bisher nur unzureichend verstanden. Die zentrale Hypothese dieses Projekts ist, dass die Stärke der top-down Kontrolle durch die Nahrungsqualität der Algen bestimmt wird, die ihrerseits durch die Allokation essentieller Ressourcen (wie Licht und Nährstoffe) beeinflusst wird. Insbesondere in räumlich gegliederten Gemeinschaften wie Periphyton zeigt die Nahrungsqualität eine große räumliche Heterogenität. Zusammen mit davon abhängigen dynamischen Verhaltensanpassungen der Herbivoren ist dies vermutlich besonders wichtig für die Kontrolle der Biomasseentwicklung des Periphytons, wenngleich diese Faktoren bisher nicht ausreichend untersucht wurden. In diesem Projekt untersuchen wir diese Hypothese auf verschiedenen Skalen und Komplexitätsstufen, sowohl in hochkontrollierten Laborexperimenten, als auch in freilandnahen Mesokosmosexperimenten. Dies umfasst die lokale, homogene Patchgröße, die komplexere Multi-Patch-Ebene mit räumlicher Heterogenität und der Möglichkeit zur Futterwahl für die Herbivoren bis hin zu hochkomplexen Szenarien unter Berücksichtigung von Wachstum und Migrationsverhalten der Herbivoren in Mesokosmosexperimenten. Auf diesen Komplexitätsstufen wird die Ressourcenverfügbarkeit (des limitierenden Nährstoffs P und Lichtenergie) experimentell manipuliert und die Kontrolle der Periphytonbiomasse durch Herbivorie auf zwei Wegen quantifiziert: a) als Biomasseflux zwischen Algen und Herbivoren und b) als Reduktion der Periphytonbiomasse durch Weidegänger im Vergleich zu konsumentenfreien Kontrollansätzen. Insgesamt wird dieses Projekt zeigen, welche Mechanismen die Stärke der top-down Kontrolle auf das Periphyton regulieren und wird dazu beitragen, die Kontrolle der Eutrophierung natürlicher Oberflächengewässer besser zu verstehen.
Auffaellige Phaenomene der letzten Jahre (Phaeocystis-Blueten mit Schaumbildung am Strand, Rote Tiden durch Dinoflagellaten und Mesodinium rubrum, Miesmuschelvergiftungen durch Dinophysis, Massensterben in Skagerrak und Kattegat in Folge einer Chrysochromulina-Bluete) fuehrten 1987 zur Einrichtung eines Informationssystems, das ueber die aktuelle Planktonsituation berichtet. Von April bis Oktober werden im 14-taegigen Rhythmus an 10 Stationen entlang der niedersaechsischen Kueste Wasserproben entnommen. Sie werden auf toxische und bluetenbildende Organismen hin kontrolliert. Ferner werden die Gehalte an Pflanzennaehrsalzen, Sauerstoff, Schwebstoff und Chlorophyll ermittelt. Die Ergebnisse werden dem Niedersaechsischen Umweltministerium sowie den mit der Fischerei befassten Behoerden gemeldet.
Die jahreszeitliche Variabilität der globalen Meereisbedeckung ist eine wichtige Komponente des globalen Klimas. Jedoch ist der kleinskalige Einfluss des Meereises in globalen Klimamodellen bis heute nur unzureichend beschrieben. Dieser Antrag hat daher das Ziel, die physikalischen (P) und bio-geo-chemischen (BGC) Schlüsselprozesse im Meereis mit einem hochaufgelösten Zweiskalenmodell mathematisch zu beschreiben. Die Ergebnisse können dann parametrisiert in globale Klimamodelle (GCMs) einfließen, sodass eine verbesserte Prognosefähigkeit erreicht wird.Die Ozeanerwärmung wird die Mikrostruktur des Meereises erheblich verändern. Wir entwickeln daher ein P-BGC-Modell einer antarktischen Meereisscholle, um die komplexen gekoppelten Zusammenhänge zwischen Eisbildung, Nährstofftransport, Salinität und Solekanalverteilung, Photosynthese und Karbonatchemie mathematisch zu beschreiben. Damit simulieren wir verschiedene Szenarien der Meereisbildung und ihrer Auswirkungen auf das Wachstum von Meereisalgen, die einen großen Einfluss auf den vertikalen Kohlenstoff-Export (biologische Kohlenstoffpumpe) besitzen.Damit leistet dieses Projekt einen wesentlichen Beitrag zum Forschungsschwerpunkt ‘3.2.D - Verbessertes Verständnis der polaren Prozesse und Mechanismen’ bei. Im Einzelnen gehen wir auf drei übergeordnete Ziele ein:Schritt 1: Beschreibung der Meereisstruktur Wir verwenden ein gekoppeltes Zweiskalenmodell, mit dem relevante Aspekte des Gefrierens und Schmelzens im Zusammenhang mit Deformation, Salinität und Soletransport beschrieben werden. Auf der Makroebene dient dafür eine kontinuumsmechanische Beschreibung im Rahmen der erweiterten Theorie poröser Medien (eTPM). Damit können über einen gekoppelten Gleichungssatz partieller Differentialgleichungen (PDE) Deformations-, Transport und Reaktionsprozesse beschrieben werden. Für das physikalische Phänomen der Phasentransformation zwischen Wasser und Eis dient das Phasenfeldmodell (PF) als Mikromodell, welches ebenfalls aus gekoppelten PDEs besteht. Daraus resultiert eine PDE-PDE Kopplung.Schritt 2: Kopplung mit dem erweiterten RecoM2 Modul als Mikromodell Damit können die BGC Phänomene beschrieben werden. Das RecoM2 Modul besteht aus einem Gleichungssystem gewöhnlicher Differentialgleichungen, sodass hier eine PDE-ODE Kopplung zu einem P-BGC Modell erfolgt. Schritt 3: Bewertung der Modellansätze Dies beinhaltet die Verifizierung und Validierung des kombinierten P-BGC-Modells mittels Literatur- sowie experimenteller Daten. Für die Verwendung des hochaufgelösten zweiskaligen P-BGC Modells in globalen Klimamodellen muss die Berechnungseffizienz gesteigert werden. Zu diesem Zweck werden Reduzierte-Basis-Modell (ROM) zur Erzeugung von Surrogaten des Vollen-Basis-Modells (FOM) eingesetzt, die die Modellkomplexität verringern, z.B. durch datengetriebene Machine-Learning (ML)-Techniken oder “Generalized Proper Decomposition” (GPD).
In dem Vorhaben wird untersucht, wie wirksam die absorbierte Lichtenergie in Biomasse konvertiert wird. Vergleichend werden Grünalgen und Diatomeen unter verschiedenen Licht- und Nährstoffbedingungen studiert. Auf diese Weise können die metabolischen Kosten unter Nährstoffmangel oder anderen produktivitätsbegrenzenden Bedingungen studiert werden. So wird auch die Säureanpassung ausgewählter Phytoplankter untersucht, um die Biomassebildung in extrem sauren Tagebaurestseen auf physiologischer Ebene zu verstehen. Es konnte gezeigt werden, dass unter Stickstoffmangel die Überführung anorganischen Kohlenstoffs in Biomassebildung durch eine Veränderung der makromolekularen Zusammensetzung der Zellen ähnlicher Effizienz stattfindet, wie unter optimaler Stickstoffversorgung. Dies führt zu einer ökologisch bedeutsamen Teilentkopplung des C und N Kreislaufs im Ökosystem. Ähnliches beobachtet man auch bei der Anpassung von Phytoplanktonalgen an extrem saure Bedingungen wie man sie in sauren Tagebaurestseen vorfindet.
Biologische Bodenkrusten (Biokrusten) sind Hotspots an mikrobieller Diversität und Aktivität, die als 'Ökosystemingenieure' biogeochemische Kreisläufe (N, P) kontrollieren und die Bodenoberfläche stabilisieren. Biokrusten sind ein komplexes Netzwerk vielfältiger, interagierender Mikroorganismen mit verschiedensten Lebensweisen. In den gemäßigten Breiten ist wenig über die Einflussfaktoren auf Struktur und Funktion der Biokrusten bekannt. Daher wollen wir die Diversität der Mikroorganismen in Biokrusten (Bakterien, Protisten, Pilze und Algen) und ihre biogeochemische Funktion in den Waldflächen der Biodiversitätsexploratorien (BE) entlang von Landnutzungsgradienten untersuchen, um deren Beeinflussung durch Landnutzung und Umweltfaktoren zu verstehen.Das zentral organisierte, neue Störexperiment in den Waldflächen ist eine hervorragende Möglichkeit, um die Entwicklung einer Biokruste unter natürlichen Bedingungen nach einer starken Störung zu verfolgen. Eine Teilfläche simuliert Kahlschlag (die Stämme werden entfernt), die andere Teilfläche einen zukünftig häufiger auftretenden Orkan (Stämme verbleiben auf der Fläche). Wir werden die Entwicklung der Bodenkrusten von einem jungen zu einem reifen Stadium visuell (Flächenbedeckung) und durch Probenahme (Biomasse, Nährstoffe, Bodenorganik, Mikrobiota) mittels Feld-, analytischen und molekularen Methoden regelmäßig über zwei Jahre verfolgen. Außerdem werden wir an der zentralen Bodenbeprobungskampagne in allen 150 Waldflächen teilnehmen und parallel Biokrusten sammeln. Wir werden die mikrobielle Biomasse in der Biokruste quantifizieren, ihre Gemeinschaftsstruktur mittels Hochdurchsatzsequenzierung beschreiben und dies mit dem Umsatz von Stickstoff- und Phosphorverbindungen verschneiden. Um Schlüsselorganismen dieser Prozesse zu identifizieren und in hoher räumlicher Auflösung zu visualisieren, wird zusätzlich ein Laborexperiment unter Anwendung von stable isotope probing und NanoSims durchgeführt. Die Daten zur Biodiversität und funktionellen Genomik werden mit den Nährstoffstatus der Biokrusten (Konzentration und chemische Speziierung von C, N und P) verknüpft. Das Laborexperiment mit stabilen Isotopen wird unser Verständnis von Biokrusten Schlüsselorganismen im N- und P-Nährstoffkreislauf und den Einfluss der räumlichen Heterogenität fundamental verbessern. Diese Daten erlauben zum ersten Mal die quantitative und qualitative Rekonstruktion der wichtigsten Stoffkreisläufe und mikrobiellen Interaktionsmuster in Biokrusten als Reaktion auf Landnutzung und Störung. Abschließend werden die ermittelten Daten in das gemeinsame bodenkundliche Netzwerk der BE integriert und dienen dann als Keimzelle für ein Synthese-Vorschlag mit dem Ziel, die Leistung der Biokruste quantitativ und qualitativ mit anderen Hotspots in Böden, wie Detritus- oder Rhizosphäre, zu vergleichen.
Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplanktonâ€ÌPilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
<p>Die wichtigsten Fakten</p><p><ul><li>An mehr als der Hälfte aller Messstellen an deutschen Flüssen werden zu hohe Phosphor-Konzentrationen gemessen und die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewssergte#alphabar">Gewässergüte</a> muss herabgestuft werden.</li><li>Messstellen mit hohen Konzentrationen sind seit Beginn der 1980er Jahre um rund ein Drittel zurückgegangen. Extreme Belastungen treten nur noch selten auf.</li><li>Ziel der Nachhaltigkeitsstrategie ist es, die Phosphor-Orientierungswerte spätestens 2030 in allen Gewässern einzuhalten.</li><li>Dafür muss die Landwirtschaft ihre Düngepraxis verändern und besonders kleine Kläranlagen die Phosphorelimination an den Stand der Technik anpassen.<br></p><p>Welche Bedeutung hat der Indikator?</p><p>Die Gewässer Deutschlands sind mehrheitlich in keinem guten Zustand (siehe Indikatoren zum ökologischen Zustand der<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-fluesse">Flüsse</a>,<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-seen">Seen</a>und<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-uebergangs">Meere</a>). Die Überdüngung der Gewässer (<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>) mit Phosphor ist eines der größten Probleme, weil es ein übermäßiges Wachstum von Algen und Wasserpflanzen auslöst. Sterben diese ab, werden sie von Mikroorganismen zersetzt. Dabei wird viel Sauerstoff verbraucht. Sauerstoffdefizite im Gewässer wirken sich auf Fische und andere aquatische Organismen negativ aus; in Extremsituationen kann es zu Fischsterben führen. Um die Überdüngung zu vermeiden, muss vor allem die Belastung durch Phosphor verringert werden. Der Kartendienst<a href="https://gis.uba.de/maps/resources/apps/acp/index.html?lang=de">„Nährstoffe und Salze“</a>zeigt Auswertungen für ca. 250 Messstellen in deutschen Flüssen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Anfang der 1980er Jahre wurden an fast 90 % aller Messstellen überhöhte Phosphorgehalte gemessen. Seit 2018 liegt der Anteil bei knapp 60 %. Betrachtet man die unterschiedlichen Güteklassen, sieht man eine weitere Verbesserung: Insgesamt ist der Anteil der stärker belasteten Gewässer zurückgegangen. Zu dieser Verbesserung haben vor allem die Einführung phosphatfreier Waschmittel und die Phosphatfällung in den größeren Kläranlagen beigetragen.</p><p>Derzeit bestehen Engpässe bei der Lieferung von Fällmitteln (z.B. Aluminiumsalze), mit denen der Phosphor in Kläranlagen aus dem Abwasser entfernt wird. Stehen diese Chemikalien zur Abwasserreinigung nicht in ausreichender Menge zur Verfügung, hat dies eine Erhöhung der Phosphorkonzentrationen im Gewässer zur Folge.</p><p>Nach der europäischen<a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32000L0060">Wasserrahmenrichtlinie</a>(EU-RL 2000/60/EG) müssen alle Gewässer bis 2027 einen guten ökologischen Zustand erreichen. In Deutschland haben fast zwei Drittel der Gewässer hierfür zu hohe Phosphorgehalte. Um die Einträge in Gewässer zu reduzieren, schreibt die neue<a href="https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Duengung.html">Düngeverordnung</a>vor, auf Böden mit hohen Phosphorgehalten wenig Gülle oder phosphorhaltige Mineraldünger auszubringen. In eutrophierten Gebieten können die Anforderungen verschärft werden. Ob dies ausreicht, wird ein Wirkungsmonitoring zeigen. Daneben soll die Abwasserverordnung nach einer Anpassung regeln, dass auch kleine Kläranlagen Phosphor nach dem Stand der Technik entfernen. In größeren Anlagen erfolgt dies bereits. Gemäß Ziel 6.1.a der<a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Nachhaltigkeitsstrategie</a>der Bundesregierung sind die Orientierungswerte für Phosphor spätestens im Jahr 2030 einzuhalten.</p><p>Wie wird der Indikator berechnet?</p><p>Die Bundesländer übermitteln dem Umweltbundesamt Messwerte von etwa 250 repräsentativen Messstellen. Für die<a href="https://www.umweltbundesamt.de/themen/wasser/gewaesser/fluesse/ueberwachung-bewertung">Einordnung in eine Gewässergüteklasse</a>wird der Mittelwert der Phosphor-Konzentration mit der Konzentration verglichen, die für den guten ökologischen Zustand in dem jeweiligen Gewässertyp nicht überschritten werden sollte<a href="http://www.gesetze-im-internet.de/ogewv_2016/BJNR137310016.html">(OGewV 2016)</a>. Sie liegen je nach <a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fliegewssertyp#alphabar">Fließgewässertyp</a> zwischen 0,1 und 0,15 mg/l Phosphor (bei einem Typ 0,3 mg/l) sowie in Übergangsgewässern bei 0,045 mg/l. Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> entspricht dem Anteil der Messstellen, die diese Orientierungswerte nicht einhalten.</p>
Es wird untersucht, wieweit die Biodiversität aeroterrestrischer Algen auf der Luft exponierten Oberflächen durch Feinstaubeintrag (PM10 und PM2.5) beeinflusst wird. Studies deal on the influence of different amounts of PM10 and PM2.5 on the biodiversity of aeroterrestrial algae that grow on exposed surfaces in urban and rural areas.
Origin | Count |
---|---|
Bund | 1248 |
Land | 205 |
Schutzgebiete | 1 |
Wissenschaft | 79 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Daten und Messstellen | 55 |
Ereignis | 24 |
Förderprogramm | 1064 |
Gesetzestext | 1 |
Kartendienst | 3 |
Taxon | 12 |
Text | 217 |
unbekannt | 103 |
License | Count |
---|---|
geschlossen | 292 |
offen | 1156 |
unbekannt | 28 |
Language | Count |
---|---|
Deutsch | 1263 |
Englisch | 329 |
Resource type | Count |
---|---|
Archiv | 29 |
Bild | 24 |
Datei | 68 |
Dokument | 143 |
Keine | 937 |
Unbekannt | 12 |
Webdienst | 4 |
Webseite | 382 |
Topic | Count |
---|---|
Boden | 1015 |
Lebewesen und Lebensräume | 1476 |
Luft | 825 |
Mensch und Umwelt | 1460 |
Wasser | 1153 |
Weitere | 1395 |