API src

Found 30 results.

Amtlicher Anzeiger, Teil II des Hamburgischen Gesetz- und Verordnungsblattes

Nach hamburgischem Landesrecht werden Veröffentlichungen durch Abdruck im Hamburgischen Gesetz- und Verordnungsblatt vorgenommen. Rechtsverbindlich ist deshalb ausschließlich die gedruckte Ausgabe des Hamburgischen Gesetz- und Verordnungsblattes Teile I und II (Amtlicher Anzeiger). Eine Inhaltssuche kann nur über die Internetseite der <a href="http://www.luewu.de/anzeiger/">Firma Lütcke & Wulff</a> erfolgen.

Effects of anthropogenic noise on fish behaviour and development

Effects of anthropogenic noise on fish behaviour and development Background Anthropogenic (man-made) noise is causing an ever-increasing problem in the natural world and it penetrates through all media - air, soil, vegetation and even water -, and may therefore affect any animals with hearing abilities and for which sound plays a crucial role. Compared to terrestrial animals, however, there have been far fewer investigations of the impact of anthropogenic noise on marine and freshwater organisms; relatively little is known about how exposure to such sounds affects fish. Investigations into potentially negative influences on fish are vital because they provide a critical food resource to the burgeoning human population and form an integral link in many food webs. The need for scientifically rigorous studies examining the impacts of anthropogenic noise on fish is therefore obvious, and has been highlighted in recent academic review and by inclusion in the policies of international and national organisations. Many species live in groups, where social interactions are essential. This is especially true for cooperative breeders - species in which parents are assisted in the care of their offspring by other individuals, known as 'helpers' - which display a wide repertoire of behaviours. Cooperatively breeding fishes are frequently territorial and consequently cannot escape areas of high anthropogenic noise; they are therefore highly vulnerable to any disruptive effects of such noise on behaviour and development. However, nothing is yet known about how anthropogenic noise might impact helping behaviour and very little about its effects on fish development. Objectives This project focuses on the effects of anthropogenic noise on fish behaviour and development. Specifically, I will investigate for the first time in fish how anthropogenic noise affects cooperative behaviour. Furthermore, I will examine how any noise-induced changes in cooperative care impact on offspring development, in addition to direct effects arising from the exposure of eggs and fry to the noise itself. By combining physiological assessment of hearing thresholds, controlled experimental manipulations, detailed behavioural observations and developmental measures of a well-studied model species (the cooperatively breeding cichlid, Neolamprologus pulcher), my overall aim is to advance our understanding of the disruptiveness of man-made sound on fish. In particular, I will address the following key research questions: o Q1. Does anthropogenic noise disrupt cooperative behaviour? o Q2. How is reproductive success affected by anthropogenic noise?

Reverse Electrodialysis Alternative Power Production (REAPOWER)

The project is focusing on the salinity gradient power reverse electro-dialysis (SGP-RE) process. It has been shown in scientific papers that the performance of the process can be increased by an order of magnitude when brine and sea or brackish water are used for the creation of the salinity gradient rather than the current approach of seawater with fresh water. The overall potential is very high and the REAPower project aims to enable the SGP-RE technology to play an important role in the energy mix of the next decades, contributing to the major objectives of energy policy for sustainability, security of supply and competitiveness. The following specific scientific and technological objectives are expected to be achieved within the life-time of the project: (i) Create materials and components tailored to the requirements of the process, including the membranes, spacers, electrodes and electrolyte. (ii) Optimise the design of the SGP-RE cell pairs and stack using a computer modelling tool developed for that purpose (iii) Verify the model, and assess the developed materials, components and design through tests on laboratory stacks. (iv) Evaluate and improve the performance of the overall system through tests on a prototype fed with real brine from a salt pond (v) Evaluate the results, analyse the economics, assess the environmental impacts and define the next necessary R&D activities for further development of the technology. The REAPower project explores a new path that has been so far only theoretically analysed. A highly innovative novel technology will be applied that overcomes the limitations of the current approach. The multidisciplinary consortium brings together key players from the industry and the academic world to work across traditional boundaries. The development of the new materials and components will contribute to the establishment of a strong scientific and technical base for European science and technology in this emerging area of energy research.

4G-PHOTOCAT - Fourth generation photocatalysts: nano-engineered composites for water decontamination in low-cost paintable photoreactors

The project 4G-PHOTOCAT allies the expertise of 7 academic and 3 industrial partners from 5 EU countries (Germany, United Kingdom, Czech Republic, Poland, and Finland) and 2 ASEAN countries (Malaysia and Vietnam) for the development of a novel generation of low-cost nano-engineered photocatalysts for sunlight-driven water depollution. Through rational design of composites in which the solar light-absorbing semiconductors are coupled to nanostructured redox co-catalysts based on abundant elements, the recombination of photogenerated charges will be suppressed and the rate of photocatalytic reactions will be maximized. In order to achieve fabrication of optimal architectures, advanced chemical deposition techniques with a high degree of control over composition and morphology will be employed and further developed. Furthermore, novel protocols will be developed for the implementation of the photocatalysts into a liquid paint, allowing for the deposition of robust photoactive layers onto flat surfaces, without compromising the photoactivity of immobilized photocatalysts. Such paintable photoreactors are envisaged particularly as low-cost devices for detoxification of water from highly toxic persistent organic pollutants which represent a serious health issue in many remote rural areas of Vietnam and other countries. The 4G-PHOTOCAT project will provide novel scientific insights into the correlation between compositional/structural properties and photocatalytic reaction rates under sunlight irradiation, as well as improved fabrication methods and enhanced product portfolio for the industrial partners. Finally, 4G-PHOTOCAT will lead to intensified collaboration between scientists working at the cutting edge of synthetic chemistry, materials science, heterogeneous photocatalysis, theoretical modelling, and environmental analytics, as well as to unique reinforcement of cooperation between scientists and industry partners from EU and ASEAN countries.

Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS)

Marine life makes a substantial contribution to the economy and society of Europe. VECTORS will elucidate the drivers, pressures and vectors that cause change in marine life, the mechanisms by which they do so, the impacts that they have on ecosystem structures and functioning, and on the economics of associated marine sectors and society. VECTORS will particularly focus on causes and consequences of invasive alien species, outbreak forming species, and changes in fish distribution and productivity. New and existing knowledge and insight will be synthesised and integrated to project changes in marine life, ecosystems and economies under future scenarios for adaptation and mitigation in the light of new technologies, fishing strategies and policy needs. VECTORS will evaluate current forms and mechanisms of marine governance in relation to the vectors of change. Based on its findings, VECTORS will provide solutions and tools for relevant stakeholders and policymakers, to be available for use during the lifetime of the project. The project will address a complex array of interests comprising areas of concern for marine life, biodiversity, sectoral interests, regional seas, and academic disciplines as well as the interests of stakeholders. VECTORS will ensure that the links and interactions between all these areas of interest are explored, explained, modelled and communicated effectively to the relevant stakeholders. The VECTORS consortium is extremely experienced and genuinely multidisciplinary. It includes a mixture of natural scientists with knowledge of socio-economic aspects, and social scientists (environmental economists, policy and governance analysts and environmental law specialists) with interests in natural system functioning. VECTORS is therefore fully equipped to deliver the integrated interdisciplinary research required to achieve its objectives with maximal impact in the arenas of science, policy, management and society.

An optical fibre sensor based intelligent system for monitoring and control of exhaust emissions from road vehicles (OPTO-EMI-SENSE)

Objective: The proposed project is designed to address the problem of pollution of the environment by road vehicles as denned under the Thematic Priority 1.6.2, Sustainable Surface Transport relating to the Work Programme 'Integrating and strengthening the European Research Area'. The research activities of the consortium will be based around state of the art developments in the area of optical fibre sensor and intelligent instrumentation technology to formulate a system for on line monitoring of exhaust emissions from road vehicles. The application of this technology to resolving the problems of atmospheric pollutants and their regional impacts is therefore highly appropriate to the issue identified in the thematic roadmap i.e. 'New technologies and concepts for all surface transport modes'. The consortium which will execute the research programme comprises six members from four EC member states. They include four academic institutions, an SME and an end user (a major European car manufacturer). Their combined expertise and knowledge of the technological and business issues will facilitate the rapid development of the technology into a demonstratable prototype within the three year lifetime of the project. The project's technical objectives are summarised as follows: -. To set up laboratory based test facilities such that the sensor systems may be characterised in a precisely controlled and reproducible manner. Therefore, individual parameters such as optical absorption and scattering may be studied in isolation as well as collectively.. To isolate and identify the optical signals arising from contaminants present in the complex mixtures of exhaust systems of a wide range of vehicles using advanced and novel optical fibre based spectroscopie interrogation techniques. To develop novel optical fibre sensors which are miniature and robust in their construction and may be fitted...

Advanced Technologies for Water Resource Management (ATWARM)

Technology gaps exist within the EU that prohibit compliance with the Water Framework Directive in providing an integrated water resource management strategy that will secure both water quality and quantity. The fundamental objective of the ATWARM ITN is to enhance the career prospects of 16 young researchers by providing them with greatly enhanced multidisciplinary skills and business aptitudes that will enable them to address these technology gaps. The two scientific objectives of the ATWARM proposal are: (i) To develop advanced technologies for enhancing the performance and/or sustainability of water and wastewater treatment plants, and (ii) To develop advanced technologies for enhancing water quality, including advanced technologies for analysis and monitoring. 14 ESR and 2 ER will participate in an integrated research programme. Each will be located within specific host organisations and will be seconded to other sites to improve their multidisciplinary skills and their knowledge of ATWARM as a whole. They will receive specific in-lab training plus general S&amp;T training at 3 Summer Schools and other relevant training events. Complementary training (involving external participants) structured to accommodate the personal career needs of each Fellow will also be provided. The ATWARM network will involve seven host organisations located in UK, Ireland and Germany. These organisations (four academic, one research and two industrial partners) have distinct but complementary research foci and, due to their involvement in an existing network, are already collaborating effectively. Participation in ATWARM will foster relationships between the partners and ensure the long term sustainability of the network. ATWARM will be coordinated by Queens University Belfast (which is experienced in the management and administration of large FP research projects) and will be managed by a Supervisory Board to ensure that all Fellows receive the same high standard of training.

European observatory for science-based and economic expert analysis of nanotechnologies, cognisant of barriers and risks, to engage with relevant stakeholders regarding benefits and opportunities (OBSERVATORYNANO)

Objective: observatoryNANO brings together leading EU organizations who collectively have expertise in the technological; economic; societal/ethical; health, safety, and environmental analysis of nanotechnologies. Its primary aim is to develop appropriate methodologies to link scientific and technological development of nanotechnologies with socio-economic impacts. Both of these aspects will be enhanced by expert opinion, making this project unique in providing relevant web-based reports in a common format across all sectors, considered by all criteria, and widely publicized. observatoryNANO will become an industry leading and opinion forming catalyst for nanotechnology in the EU. The purpose is to avoid the exaggerated socio-economic impact of nanotechnologies and place developments in a realistic time-frame. It will present a reliable, complete, and responsible science-based and economic expert analysis of peer-reviewed literature, patents, national funding strategies, investment trends, and markets; in combination with information derived from questionnaires, interviews and workshops with academic and industry leaders, investors, and other key stakeholders.

Natural product lead discovery at the microgram scale - an integrated approach

Natural products remain an important source for drugs and a source of inspiration for medicinal chemists for the design of synthetic drugs and probes for the study of biological functions. The contribution of academic laboratories in natural products discovery has been substantial. The limiting factor of pharmaceutical natural product research has been with the tedious process of purification and identification of the lead molecules from the highly complex crude extract. Recent technological advances enable now a miniaturization of the screening and discovery process for natural product leads. The proposal here is for the purchase of a 500 MHz NMR spectrometer specifically equipped for the measurement of mass limited samples. It includes a recently commercialized 1 mm probe and autosampler and is capable of recording 1D and 2D NMR spectra with microgram (20-100 myg) amounts of natural products and synthetic drug-like molecules. The spectrometer is configured to fit into the technology platforms and the workflows of the Drug Screening Group of the Swiss Tropical Institute and the Institute of Pharmaceutical Biology. The instrument shall be used for various interdisciplinary projects of the two principal applicants and for a consortium which is being established. The major use will be for HPLC-based lead discovery in the area of Alzheimer's disease, Malaria, and neglected tropical diseases. The instrument will also be employed for metabolic fingerprinting of selected plants and phytomedicines. A third application will be in the analysis of compound libraries from external sources which are screened by the applicants in the context of the principal projects. An NMR instrument with this configuration is currently not in operation at a Swiss university. It is the missing link in a technology platform established at the laboratories of the two applicants. This platform should enable a paradigm shift in the way how natural product leads are identified, namely by miniaturizing the entire process of screening, separation and lead identification to the microgram level. A significant gain in efficiency of the discovery process and, thus, in research productivity, both qualitative and quantitative, is anticipated. The equipment will also be of interest to all those scientists in the biomedical sciences who need structural information from mass limited samples such as, for example drug metabolites.

FP6-POLICIES, Comparison and Assessment of Funding Schemes for the Development of New Activities and Investments in Environmental Technologies (FUNDETEC)

The project examines funding of environmental technology development and commercialisation. The objectives are to: measure the performance of existing funding schemes (emphasising commercial-type funding); determine how environmental aspects are dealt with; identify obstacles; and suggest evolution of new schemes. Eight project work packages address these objectives, and also include development of environmental technology typologies, analysis of funding gaps, and comparison to Japan and the USA. The project supports SSP 5A by connecting policy and practice, linking researchers from across the EU, and using wide consultation to disseminate knowledge and maximise exploitation of research results. Consortium partners are drawn from five EU states, and have expertise and networks in private and public environmental technology funding and technology development processes. Stakeholder consultation with private and public funders, developers, academics, policy makers and NGOs will support research and knowledge dissemination. Consultation will include major public conferences and forums, sector-specific focus groups, and workshops to test analysis and geographic variations. Consultation and publication and dissemination of the final report will spur innovation by private and public funders, supporting knowledge exploitation after project completion. Research will emphasise private sector solutions, but will also include public-private partnerships, which are innovative measures that can assist in closing the funding gap. The varying applicability of such partnerships across different EU states will also be considered. The two project deliverables will be a database containing research and contact information, and a widely published final report that will integrate all research and recommendations. Prime Contractor: Partenaires Europeens pour l'Environnement; Bruxelles; Belgium.

1 2 3