API src

Found 30 results.

Amtlicher Anzeiger, Teil II des Hamburgischen Gesetz- und Verordnungsblattes

Nach hamburgischem Landesrecht werden Veröffentlichungen durch Abdruck im Hamburgischen Gesetz- und Verordnungsblatt vorgenommen. Rechtsverbindlich ist deshalb ausschließlich die gedruckte Ausgabe des Hamburgischen Gesetz- und Verordnungsblattes Teile I und II (Amtlicher Anzeiger). Eine Inhaltssuche kann nur über die Internetseite der <a href="http://www.luewu.de/anzeiger/">Firma Lütcke & Wulff</a> erfolgen.

Embedded Optimization for Resource Constrained Platforms (EMBOCON)

There is enormous economic potential for the application of embedded optimization technologies in embedded systems design. Recent advances in the performance of embedded hardware platforms, in combination with fundamental improvements in optimization theory and algorithms, have opened the door to widespread applications over the next decade. Embedded optimization will enable huge energy and resource savings, increased safety, and improved fault detection across a wide a range of industrial applications in the mechatronic, automotive, process control and aerospace sectors. In order to realize the full potential of optimization in embedded systems, their design must also be supported by a focussed set of tools enabling the rapid transfer of novel high-performance algorithms to practical applications. The EMBOCON consortium will enable widespread application of real-time optimization in embedded systems through: - Tailoring of customized numerical algorithms to increase their robustness and efficiency on embedded systems - Enabling real-time optimization on cheap industry-standard hardware platforms - Defining a common user interface for optimization technologies to facilitate technology transfer to industry - Performing challenging case studies in cooperation with industrial partners to demonstrate technological maturity. The EMBOCON consortium will strengthen a network of world-leading academic and industrial partners with complementary expertise in control, optimization and embedded systems in a range of industrial applications. Particular emphasis is placed on close collaboration between mathematical algorithm developers, control theorists, hardware specialists and industrial application engineers. The network will consolidate and extend Europe's position as the world research leader in these areas and foster strong collaborative links between European academia and industry. Prime Contractor: University London, Imperial College of Science, Technology and Medicine, Faculty of Engineering, Level 2 Faculty; London; United Kingdom.

4G-PHOTOCAT - Fourth generation photocatalysts: nano-engineered composites for water decontamination in low-cost paintable photoreactors

The project 4G-PHOTOCAT allies the expertise of 7 academic and 3 industrial partners from 5 EU countries (Germany, United Kingdom, Czech Republic, Poland, and Finland) and 2 ASEAN countries (Malaysia and Vietnam) for the development of a novel generation of low-cost nano-engineered photocatalysts for sunlight-driven water depollution. Through rational design of composites in which the solar light-absorbing semiconductors are coupled to nanostructured redox co-catalysts based on abundant elements, the recombination of photogenerated charges will be suppressed and the rate of photocatalytic reactions will be maximized. In order to achieve fabrication of optimal architectures, advanced chemical deposition techniques with a high degree of control over composition and morphology will be employed and further developed. Furthermore, novel protocols will be developed for the implementation of the photocatalysts into a liquid paint, allowing for the deposition of robust photoactive layers onto flat surfaces, without compromising the photoactivity of immobilized photocatalysts. Such paintable photoreactors are envisaged particularly as low-cost devices for detoxification of water from highly toxic persistent organic pollutants which represent a serious health issue in many remote rural areas of Vietnam and other countries. The 4G-PHOTOCAT project will provide novel scientific insights into the correlation between compositional/structural properties and photocatalytic reaction rates under sunlight irradiation, as well as improved fabrication methods and enhanced product portfolio for the industrial partners. Finally, 4G-PHOTOCAT will lead to intensified collaboration between scientists working at the cutting edge of synthetic chemistry, materials science, heterogeneous photocatalysis, theoretical modelling, and environmental analytics, as well as to unique reinforcement of cooperation between scientists and industry partners from EU and ASEAN countries.

Development of an integrated biorefinery for processing chitin rich biowaste to specialty and fine chemicals (CHIBIO)

The current project proposal discloses a novel biorefinery process for a sustainable, waste free, low energy conversion route of negative value marine waste streams into high value, high performance chemical intermediates and products for the polymer industry. The project has a strong emphasis on technology development and transfer to low-tech and developing countries in the EU and associated ICPC and therefore will significantly contribute to the technological and economic leadership of the EU. The technologies disclosed in this project will foster the natural growth of sustainable economies in the EU and beyond by eliminating the need for fossil resources to preserve and exceed the current standard of living. The innovative technologies developed in this project will apply novel concepts for the production of bio-based platform chemicals that act as 'drop-ins' for existing and novel polymer production processes with high atom efficiencies. The unique assembly of the current consortium consisting of academics, SME's and large scale chemical industry partners, clearly has the scientific and technical expertise to rapidly transform laboratory based results into novel product lines at an accelerated time frame. As a part of the strategy the consortium has included Demonstration Activities as require by the FP7-KBBE-Call.

FP7-PEOPLE, Mechanistic effect models for the ecological risk assessment of chemicals (CREAM)

There is widespread concern about how production and use of chemicals affect the environment. Yet food production and benefits of chemical products are vital for the functioning of European societies. In order to ensure sustainable use, EU regulations require extensive risk assessment before a chemical is approved for use. Current risk assessments focus on risk at the level of individual organisms, but according to EU directives the protection goal aims at achieving sustainable populations. Population-level effects depend not only on exposure and toxicity, but also on important ecological factors that are impossible to fully address empirically. Mechanistic effect models (MEMs) enable the integration of these factors, thus increasing the ecological relevance of risk assessments as well as providing vital understanding of how chemicals interact with ecosystems. Such understanding is crucial for improving risk mitigation strategies and ecosystem management. So far, however, regulators and industry have lacked understanding of the potential benefits that MEMs can deliver, and academics have been inconsistent in the approaches applied. This has led to scepticism about models, preventing a wider use of MEMs in risk assessment. Examples clearly demonstrating the power of MEMs for risk assessment are urgently needed, and industry, academia and regulatory authorities across Europe need scientists that are trained in both MEMs and regulatory risk assessment. CREAM will develop and experimentally validate a suite of MEMs for organisms relevant for chemical risk assessments. The consortium includes the main sectors involved (industry, academia, regulators) and will formulate Good Modelling Practice that will be followed in all individual projects, thus leading to consistency and transparency. CREAM will provide world class training for the next generation of ecological modellers, emphasizing transparency and rigorous model evaluation as core elements of the modelling process.

Bioactive natural products - linking chemical and biological information for lead discovery, preliminary SAR and assessment of undesired pharmacological properties

Small molecule natural products are a prolific source of inspiration for the development of new drugs, and essential tools in basic biomedical research as probes of biological functions. The contribution of academic laboratories in natural products discovery has been essential. The limiting factor of traditional approaches in bioactivity-directed natural product research has been the tedious process of purification and identification of active molecules from a highly complex extract matrix. Recent technological advances enable substantial improvements in efficiency via a consequential miniaturization of the screening and discovery process, and automation of certain process steps. The aim of the project is to discover small molecule natural products leads from plants and fungi acting against clinically relevant and/or emerging targets in important disease areas. The targets have been selected on the basis of specific criteria, such as (i) novelty and importance of target; (ii) lack of specific/selective inhibitors; (iii) need for enhancement of structural diversity of ligands; (iv) difficulty/impossibility to use rational drug discovery approaches; (v) access to animal models. Indications include CNS (selective GABA-A receptor agonists), inflammation and cancer (modulation of angiogenesis and lymphangiogenesis, inhibition of PI3 kinases). In addition, a screening for hERG channel inhibition will be carried out as the currently most critical anti-target in drug discovery & development. An extract library and a technology platform for the miniaturized discovery of natural products will be used. The library consists of currently 1000 plant and fungal extracts. An ethnomedicine-based focussed sub-library will be specifically tested for GABAA receptor agonistic properties. All process steps in the screening and consecutive lead identification are miniaturized, in part automated, and based on the 96-well microtiter footprint. Most of the assays are via external collaborations, and some assays involving cell signalling are established in-house. Prioritized extracts are submitted to HPLC-based activity profiling with microtiter-based fractionation of column effluent, and simultaneous on-line spectroscopic (PDA, ion-trap ESI and APCI-MS, and ESI-TOF) analysis. Compound dereplication and identification is supported by off-line microprobe NMR spectroscopy. Around the active target molecules, structurally related compounds will be characterized to generate small 'virtual' libraries for preliminary structure activity relationships. Calculation of physico-chemical data and secondary bioassays will characterize leads, and shortlisted compounds will be tested in vivo for proof of concept. For this purpose, compounds of interest are isolated in a targeted manner in amounts of up to several hundred mg.

European observatory for science-based and economic expert analysis of nanotechnologies, cognisant of barriers and risks, to engage with relevant stakeholders regarding benefits and opportunities (OBSERVATORYNANO)

Objective: observatoryNANO brings together leading EU organizations who collectively have expertise in the technological; economic; societal/ethical; health, safety, and environmental analysis of nanotechnologies. Its primary aim is to develop appropriate methodologies to link scientific and technological development of nanotechnologies with socio-economic impacts. Both of these aspects will be enhanced by expert opinion, making this project unique in providing relevant web-based reports in a common format across all sectors, considered by all criteria, and widely publicized. observatoryNANO will become an industry leading and opinion forming catalyst for nanotechnology in the EU. The purpose is to avoid the exaggerated socio-economic impact of nanotechnologies and place developments in a realistic time-frame. It will present a reliable, complete, and responsible science-based and economic expert analysis of peer-reviewed literature, patents, national funding strategies, investment trends, and markets; in combination with information derived from questionnaires, interviews and workshops with academic and industry leaders, investors, and other key stakeholders.

FP6-SUSTDEV, An innovative approach of Integrated Wildland Fire Management regulating the wildfire problem by the wise use of fire: solving the FIRE PARADOX (FIRE PARADOX)

Wildfires are a major problem for many European societies threatening human lives and property with disastrous impacts particularly at the wildland-urban interface. On the other hand humans always used fire as a tool to regulate nature and traditional use of fire is known in many regions of Europe. The understanding of this paradox, is thus essential for finding solutions for integrated wildland fire management.This concept requires considering the various aspects of fire, from its use as a planned management practice (prescribed fire) to the initiation and propagation of unplanned fires (wildfires) and to the use of fire in fighting wildfires (suppression fire). Prescribed or suppression fires will therefore set the limits for wildfires by vontrolling their spatial extent, intensity and impacts. This is the main approach adopted aiming at the creation of the scientific and technological bases for new practices and policies under integrated wildland fire management and in the development of strategies for its implementation in Europe. Three major domains of related activities were considered: research, development and dissemination. In research, the project will focus on understanding the machanisms and modelling the processes associated with fire, from physics to biology and social sciences. Experimental and sampling methods will be used. The scientific and technical knowledge gathered will allow the development of a technological platform that will integrate the fire model, the temporal and spatial variability of fuels and weather, and the potential ecological and social-economical impacts. Documentation and demonstration platforms will also be extensively used for dissemination, focusing in the development of stategies for public awarness, academic and professional training using new communication technologies and networks, and for the implementation of new practices, policies and regulations under the concept of integrated wildland fire management. Prime Contractor: Universidade Tecnica de Lisboa, Instituto Superior de Agronomia; Lisboa; Portugal.

reclip:more

A reliable assessment of future climate impacts in Austria makes necessary to provide regional climate model (RCM) runs, and additional tasks to deliver high resolution downscaled datasets for past and future climate targeting the entire eastern alps covering Austria. The project reclip:more (Research for Climate Protection: Model Run Evaluation) is a cooperation of five academic institutions. The major scientific goals are: quantify the uncertainties of regional climate simulations elated to observed climate data, investigate the sensitivity of regional climate simulations and interpolated climate data to the influence of different model parameters and data processing techniques, deliver regional climate change scenarios at mesoscale and microscale resolutions for the eastern Alps covering Austria . To achieve this, data preparations, a set of common model experiments and data evaluations have to be carried out with sensitivity studies. In project year 1 (Nov. 2003 to June 2004, postponed to Oktober 2004) the reclip:more-teams focused on preparative work for the 10-year simulations, using ERA-40 data and ECHAM5 control runs of current climate from the 1990ies. Furthermore a huge number of sensitivity studies aiming at finding the optimal RCM-setup (e.g. extent and position of the nests, nesting strategy, parameterization, etc.) were made. Additionally, different examinations concerning further statistical downscaling and on the preparation of validation data and methods were done. To compare the model results with observation data, monitoring data sets for Austria and synoptic data sets for entire Europe have been prepared. In the 2nd year (Nov. 2004 to June to Oktober 2005) the emphasis lay on the retrospective model runs with the two RCMs and the re-analysis/GCM-datasets for 1981-1990. Also a number of short episode runs and 7 annual runs with different settings were evaluated. At the end a comprehensive benchmarking of the model-outputs was done. At the same time the prospective model runs were prepared. The second main topic was the development of downscaling techniques for the regionalization of observation data and model results in the Alpine region. Downscaling of model results for a resolution of 1 km have been derived for temperature, precipitation and solar radiation with terrain-related response variables (for irradiation additionally with radiation-physics-related numerical functions). For near-surface-wind a method was accomplished by dynamical downscaling via MM5 and CALMET. In year 3 the prospective model runs for 2041-2050 will follow. With the in PJ2 developed techniques the model results will be downscaled to 1km for three study regions in Austria . At the end the transient high resolution results and monitoring data will be provided to the interested climate community.

An optical fibre sensor based intelligent system for monitoring and control of exhaust emissions from road vehicles (OPTO-EMI-SENSE)

Objective: The proposed project is designed to address the problem of pollution of the environment by road vehicles as denned under the Thematic Priority 1.6.2, Sustainable Surface Transport relating to the Work Programme 'Integrating and strengthening the European Research Area'. The research activities of the consortium will be based around state of the art developments in the area of optical fibre sensor and intelligent instrumentation technology to formulate a system for on line monitoring of exhaust emissions from road vehicles. The application of this technology to resolving the problems of atmospheric pollutants and their regional impacts is therefore highly appropriate to the issue identified in the thematic roadmap i.e. 'New technologies and concepts for all surface transport modes'. The consortium which will execute the research programme comprises six members from four EC member states. They include four academic institutions, an SME and an end user (a major European car manufacturer). Their combined expertise and knowledge of the technological and business issues will facilitate the rapid development of the technology into a demonstratable prototype within the three year lifetime of the project. The project's technical objectives are summarised as follows: -. To set up laboratory based test facilities such that the sensor systems may be characterised in a precisely controlled and reproducible manner. Therefore, individual parameters such as optical absorption and scattering may be studied in isolation as well as collectively.. To isolate and identify the optical signals arising from contaminants present in the complex mixtures of exhaust systems of a wide range of vehicles using advanced and novel optical fibre based spectroscopie interrogation techniques. To develop novel optical fibre sensors which are miniature and robust in their construction and may be fitted...

1 2 3