API src

Found 44 results.

Dynamische Anpassung der Quellenkapazität an fluktuierende Licht- und Temperaturumgebungen

Wheat is one of the most important staple food crops and high grain yields are essential for global food security. Breeding raised yields continuously over the past century, however yield potential is increasingly suppressed by challenges associated with climate change and regulatory restrictions on crop inputs. Our extensive previous work confirmed that limitations to wheat yield potential are primarily determined by traits implicated in source-sink relations. The aim of this subproject in the Package Proposal “Wheat source-sink relationships and limitations (WheatSouSi)” is to understand the effects of environmental fluctuations on the formation, acclimation and limitation of canopy source capacity.Plants constantly acclimatize their photosynthetic capacity to fluctuating light and temperature environments. Acclimations are dynamic physiological processes affecting the size and the capacity of photosynthetic organs, which determine source capacity of winter wheat for grain filling. Although light and temperature acclimation of photosynthesis have been well studied using constant light and temperature environments, our knowledge about the acclimation to fluctuating light and temperature conditions is rare. Based on the hypothesis that synthesis rates of photosynthetic proteins depend non-linearly on light and temperature, we first propose a mechanistic model of photosynthetic protein turnover to describe the acclimation to fluctuating light and temperature. Second, a series of growth chamber experiments are planned to parameterize and to validate the proposed model in 50 winter wheat cultivars. The differences in photosynthetic acclimation strategies between cultivars can be characterized by their parameters in the model. Additionally, the combined effects of light and temperature on the coordination between stomatal morphology, photosynthetic induction and water use efficiency at leaf level will be quantified and integrated into static and dynamic functional-structural plant models (FSPMs) to understand how canopy source capacity can be maximized by photosynthetic acclimation strategies. To synthesize the outcomes of all results, structural equation modelling will be used to systematically test the strength and significance of causal interdependencies between physiological traits, source strength, sink strength and grain yield. The knowledge gain will facilitate a better understanding of crop physiology and improve crop models describing source and sink dynamics.

Biochemische Mechanismen der Temperaturadaptation bei Wirbeltieren

Ziel der Untersuchung ist die Aufklaerung molekularer Mechanismen, mit deren Hilfe poikilotherme Wirbeltiere (vornehmlich Fische) in der Lage sind, sich schwankenden Umwelttemperaturen (saisonale Akklimatisation u. experimentell ausgeloeste Akklimation) anzupassen. Hierbei stehen Mechanismen, die primaer das Nervensystem betreffen, im Vordergrund. Die Arbeitsmethoden sind physiologischer u. biochemischer Natur.

Reaktion des Photosyntheseapparats in tropischen Pflanzen auf starkes sichtbares und ultraviolettes Licht

Das Vorhaben umfasst Untersuchungen der inhibierenden Wirkung von Sonnenstrahlung auf die Photosynthese in tropischen Pflanzen und deren Akklimatisation an ambiente Lichtbedingungen. Die Reaktion des Photosyntheseapparats auf natürlichen 'Lichtstress' in Schatten- und Sonnenblättern wird mittels verschiedener Messparameter analysiert. Insbesondere werden spezifische Filter für ultraviolettes Licht (UV-B und UV-A) angewandt, um die Reaktion der Blätter auf die solare UV-Strahlung zu untersuchen. Im Vordergrund der Messungen steht der CO2-Gaswechsel, da Studien mit artifizellem UV-Licht eine bevorzugte Inhibition der CO2-Assimilation durch UV-B gezeigt haben. Daneben werden Änderungen der Aktivitäten der Photosysteme II und I durch Chlorophyllfluoreszenz- bzw. Absorptionsmessungen erfasst. Die Akklimatisation von Schattenblättern an tägliche Sonnenexposition wird mehrere Wochen lang anhand der Zusammensetzung der Photosynthesepigmente und Anreicherung von UV-absorbierenden Substanzen verfolgt. Modellversuche mit Mutanten von Arabidopsis thaliana sollen klären, ob das im Xanthophyllzyklus gebildete Zeaxanthin und die assoziierte thermische Dissipation von Anregungsenergie zum Schutz des Photosystems I beiträgt. Die Sonnenexpositions-Experimente und physikalischen Messungen werden weitgehend am Smithsonian Tropical Research Institute in Panama in Kooperation mit Dr. K. Winter durchgeführt. Pigmentanalysen und Datenverarbeitung sowie die Untersuchung einer C4-Pflanzenart und der Arabidopsis-Mutanten erfolgen am Institut für Biochemie der Pflanzen in Düsseldorf.

Schwerpunktprogramm (SPP) 2451: Lebende Materialien mit adaptiven Funktionen, Teilprojekt: Konstruktion lebender Aktoren aus fädigen Cyanobakterien

In diesem Projekt schlagen wir eine experimentelle und theoretische Zusammenarbeit vor, um lebende Aktuatoren aus gleitenden, fädigen Cyanobakterien zu entwickeln. Diese phototrophen Organismen spielen sowohl aktuell als auch historisch eine wichtige Rolle im Kohlenstoffkreislauf der Erde, da sie beispielsweise den atmosphärischen Sauerstoff und große Teile unserer fossilen Brennstoffe erzeugten. Filamente bestehen aus vielen linear verketteten Zellen. Sie haben einen Durchmesser von nur wenigen Mikrometern, können aber bis zu einigen Millimetern lang werden. In Kontakt mit festen Oberflächen oder anderen Fäden gleiten sie entlang ihrer Kontur und reagieren auf Lichtgradienten durch Richtungsumkehr. Die zu Grunde liegenden Mechanismen sind noch nicht vollständig geklärt. In natürlichen Lebensräumen führt diese Bewegung zur Aggregation in dichte Kolonien, die sich je nach Umgebungsbedingungen zusammenziehen oder wieder zerstreuen können, was eine kollektive Akklimatisierung ermöglicht. Wir werden diese Eigenschaften nutzen, um anpassungsfähige lebende Aktuatoren zu entwickeln, d. h. ein Material, das durch Stimulation mit Licht seine Form verändern kann. Die Bakterien werden in eine Matrix eingebettet, typischerweise ein gel- oder faserbasiertes Material mit maßgeschneiderten Eigenschaften und Strukturen, die im Projekt entwickelt werden. Indem wir die Bakterien mit Hilfe von Lichtmustern steuern und ausrichten, wollen wir ein aktives Netzwerk im Gerüst aufbauen, das sich bei Stimulation zusammenziehen kann. Die Kräfte aus dem aktiven Netzwerk werden entweder durch Adhäsion oder mechanische Verzahnung zwischen aktiven und passiven Komponenten übertragen. Durch die Abstimmung der gegenseitigen Ausrichtung von aktiven und passiven Netzen und ihrer Anisotropie wollen wir eine Kontrolle der Deformation erreichen. Auf langen Zeitskalen wird das Material adaptiv sein, da langfristige einwirkende Lichtmuster eine topologische Neuordnung des aktiven Netzes bewirken, so dass zwischen verschiedenen Aktuationsmodi gewechselt werden kann. Die Entwicklung von Manipulationsstrategien, die in der Lage sind, mechanische Arbeit zu extrahieren, erfordert Kenntniss der raum-zeitlichen Organisation der Krafterzeugung einzelner Filamente und ihrer Ensembles, welche bisher nicht verfügbar ist und in diesem Projekt gewonnen werden soll. Im Gegensatz zu den meisten bisher untersuchten lebenden Aktuatoren basiert unser System auf langen, flexiblen und beweglichen polymeren Bestandteilen, die äußerst robust und von Natur aus durch Licht stimulierbar sind: Die Fasernatur der lebenden Bestandteile ermöglicht es, stark verflochtene Netzwerke zu schaffen, die in einem breiten Spektrum von Umgebungsbedingungen bestehen können. Ihre Beweglichkeit und Reaktionsfähigkeit ermöglicht es, das Netzwerk selbst zu aktivieren, ohne dass die lebenden Bestandteile aufwendig modifiziert werden müssen.

Generationenübergreifende Anpassungstrategien an Ozeanversauerung und -erwärmung in Fischen

Anthropogene CO2 Emissionen werden zum Teil von den Ozeanen absorbiert und führen zu erniedrigten marinen pH und Karbonatwerten, dieser Prozess wird Ozeanversauerung genannt. Ozeanversauerung geht mit Ozeanerwärmung einher, zusammen bedrohen beide Umweltveränderungen das Leben im Meer. Fische wurden bisher als recht unempfindlich gegenüber diesen Veränderungen im Meerwasser eingeschätzt, da sie über hoch entwickelte Säure-Base- und Ionenregulation verfügen. Daher haben nur wenige physiologische Studien den Einfluss von Hyperkapnie auf die Physiologie und das Verhalten von Fischen untersucht, und häufig wurden dabei auch CO2 Partialdrücke eingesetzt, die weit jenseits der vom IPCC prognostizierten Werte für die nahe Zukunft liegen. Weiterhin wurden bisher nur wenige Lebensstadien untersucht, obwohl es immer mehr Anhaltspunkte dafür gibt, dass besonders die frühen Lebensstadien, die noch nicht über voll ausgeprägte homeostatische Kapazitäten und Verhaltenrepertoire verfügen, besonders empfindliche gegenüber OAW reagieren. Weiterhin lassen viele aktuelle Studien eine integrative Analyse von physiologischen Antworten auf zellulärer, Gewebe- und Ganztierebene vermissen, außerdem fehlt uns ein generelles Verständnis des evolutionären (generationenübergreifenden) Anpassungspotentials von Fischen an den Klimawandel. FITNESS versucht kritische Wissenslücken zu schließen, indem die synergistischen Auswirkungen von OAW auf Zell-, Gewebe- und Ganztierebene an verschiedenen Lebensstadien (Embryonen, Larven, Jungfische und Adulte) an warm-temperaten Wolfsbarschen (Dicentrarchus labrax) untersucht werden. Dabei untersucht FITNESS die physiologischen Reaktionen zwischen F0 und F1 Generationen von Fischen, von denen bereits die Elterntiere verschiedenen OAW-Szenarien ausgesetzt waren; weiterhin werden auch Wildpopulationen untersucht. Damit bereitet FITNESS den Weg für eine ganzheitlichere Analyse der Populationsakklimatisation und -adaptation, indem phänotypische Veränderungen mit Darwin'schen Fitnessfaktoren verknüpft und die Vererbbarkeit physiologischer Schlüsselparameter untersucht werden. Um weiterhin unser Ursache-Wirkungs-Verständnis von OAW voran zu treiben, werden konzeptionelle Modelle eingesetzt, die die Antworten auf Zell-, Gewebe- und Ganztierebene parametrisieren und in physiologisch-bioenergetische Modelle einfließen lassen, um mögliche Anpassungskapazitäten und Abstriche in Wachstum, Reproduktion und Mortalitätsrisiko abzuschätzen. FITNESS profitiert dabei von den großzügigen Aquakulturkapazitäten in Frankreich, in denen eine große Anzahl von Fischen (größer als 1000) über zwei Generationen hinweg sowohl unter Labor- als auch unter Feldbedingungen verfolgt werden kann. Weiterhin kommen FITNESS die enge Zusammenarbeit mit aktuellen Ozeanversauerungsprojekten in Deutschland (BIOACID) und Portugal zugute, die sich mit Kalt- bzw. Warmwasserfischen beschäftigen und somit Vergleiche über einen weiten Bereich von Temperaturfenstern erlauben.

Akklimatisierung und Mortalität: Wie europäische Wälder auf den zunehmenden Trockenstress reagieren

Die jüngste Zunahme in der Häufigkeit und Dauer trockener Sommer in Europa stellt die Anpassungsfähigkeit vieler Baumarten auf die Probe und führt zu einem weitverbreiteten Rückgang der Produktivität und oftmals sogar zum Absterben ganzer Wälder. Die Geschwindigkeit dieser klimatisch bedingten Veränderungsprozesse stellt langjährige Bewirtschaftungspraktiken infrage und zeigt die Notwendigkeit, Wachstumsraten und Bestandsdynamik unter veränderten Umweltbedingungen zu bewerten und zu modellieren. Die hier beantragte Studie analysiert interregionalen Klima-Wachstums-Reaktionen von Bäumen, um deren Widerstandsfähigkeit und Akklimatisierung unter zukünftigen Klimabedingungen einschätzen zu können. Die Analyse konzentriert sich auf eine der bedeutsamsten mitteleuropäischen Baumarten (Pinus sylvestris L.) und die Beziehung zwischen Holzanatomie und Klimavariabilität vor, während und nach vergangenen Dürreereignissen. Ziel des Forschungsvorhabens ist die Ableitung statistisch verifizierbarer Schätzgrößen zur Akklimatisationsfähigkeit von Kiefern unter Verwendung eines Jahrringnetzwerks lebender und abgestorbener Bäume in Zentraleuropa. Im Rahmen des Projekts werden 17 neue Waldstandorte beprobt, Messungen von 20 weiteren Standorten aktualisiert und bestehende Daten von mehr als 300 Standorten integriert. Verallgemeinerte lineare gemischte Modelle (GLMM) werden verwendet, um die Schätzungen der Akklimatisierungskapazität raum-zeitlich zu extrapolieren und Eignungsprojektionen für europäische Kiefernbestände unter Berücksichtigung unterschiedlicher Szenarien zu entwickeln. Mit diesem Ansatz werden folgende Projektziele verfolgt: (i) Ein neues subkontinentales, dendrochronologisches Netzwerk lebender und abgestorbener Bäume zur statistischen Bewertung von Trockenheitsauswirkungen. (ii) Die Quantifizierung der Akklimatisierungskapazität von Pinus sylvestris im europäischen Verbreitungsgebiet. (iii) Eine räumlich differenzierte Schätzung der Widerstandsfähigkeit und künftigen Eignung von Wäldern in verschiedenen Klimawandelszenarien bis in das Jahr 2100. Ein wesentlicher Bestandteil des Proposals ist die Integration umfangreicher empirischer Daten von Hunderten von Jahrringstandorten und Modellierung zur Abschätzung der Akklimatisierungskapazität und Leistungsfähigkeit europäischer Kiefernwälder. Somit zielt das Projekt darauf ab, einen Beitrag zu den laufenden Bemühungen nachhaltiger Forstwirtschaftsstrategien unter den Bedingungen des Klimawandels zu leisten.

Biochemische Anpassung der Pflanzen, insbesondere des Photosyntheseapparates an die Wirkung von Pestiziden auf photosynthetische Reaktionen

Der Photosyntheseapparat besitzt bei vielen Pflanzen eine grosse modifikativische Plastizitaet, welche eine kurzfristige Akklimatisation an wechselnde Umweltbedingungen gestattet. Es kommt zu einer Vielzahl von oekologischen Abwandlungen der Blaetter als photosynthetisches System. Solche Anpassungen lassen sich auch bei einzelligen Algen beobachten und in vereinfachten Systemen bearbeiten. Unsere Untersuchungen der letzten Jahre zeigen, dass es sich bei den Anpassungen an unterschiedliche Lichtbedingungen um komplexe, ausbalancierte Veraenderungen vieler struktureller und enzymatischer Komponenten handelt. Hierzu gehoeren vor allem Veraenderungen der Blatt- und Zellanatomie der Enzym- und Redoxsysteme, der Pigmentverhaeltnisse sowie die Thylakoidstruktur der Chloroplasten. Es laesst sich zeigen, dass solche Reaktionen auch durch Pestizide (Kinetik, Essigsaeure, Vanadium, Eisen) induzierbar sind. Im einzelnen wurden folgende Komponenten des Photosyntheseapparates untersucht: Pigmente, Cytochrome, P-700, Chlorophyll-Protein Komplexe, Enzyme des Calcincyclus und des Stickstoffwechsels.

In-vitro-Etablierung von Acer pseudoplatanus

Zielsetzung: Entwicklung eines In-vitro-Vermehrungsprotokolls für Acer pseudoplatanus anhand von Pflanzenmaterial aus selektierten Elite-Bäumen. Der Berg-Ahorn (Acer pseudoplatanus) ist in Europa weit verbreitet, da er sowohl als Park- und Alleebaum, als auch in der Forstwirtschaft eine wichtige Bedeutung hat. Wegen der großen Blätter bietet er an Straßen relativ guten Lärmschutz, wobei die Empfindlichkeit gegen Streusalz von Nachteil ist. Als waldbaulich und ökologisch wertvolle Mischbaumart dient der Berg-Ahorn aufgrund seiner aus Verzweigung entstandenen Herzwurzel der Bodenverbesserung. Das qualitativ wertvolle Holz zählt zu den Edellaubhölzern und erzielt bei hochwertigen Stämmen Preise von mehreren tausend Euro. Häufig vermehrt sich der Berg-Ahorn von allein. Er kann aber auch gezielt aus Samen oder Stecklingen herangezogen werden. Zur Erzielung einer höheren Vermehrungsrate wird an der HBLFA für Gartenbau für Acer pseudoplatanus ein In-vitro-Vermehrungsprotokoll entwickelt. Von selektierten Elite-Bäumen wird juveniles Pflanzenmaterial beprobt und in vitro etabliert. Nach erfolgreicher In-vitro-Etablierung erfolgt in weiterer Folge die Methodenentwicklung für die In-vitro-Vermehrung, In-vitro-Bewurzelung und Akklimatisierung im Gewächshaus. Bei erfolgreichem Projektabschluss sind weitere wissenschaftliche Tätigkeiten in Bezug auf Entwicklung eines In-vitro-Protokolls zur Induktion von Salztoleranz (Streusalzempfindlichkeit bei Acer pseudoplatanus sehr hoch) geplant.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Polare Fische und der globale Wandel: Wie beeinflussen multiple Umweltressoren den Stoffwechsel arktischer & antarktischer Fische?

Ozeanerwärmung, -versauerung und die Umweltverschmutzung, nehmen zunehmend Einfluss auf die arktische und antarktische Umwelt. Antarktische, stenothermen Fische haben sich evolutionär an die dortigen stabilen Umweltbedingungen angepasst, welche z.B. genetische und funktionellen Veränderungen beinhalten. Diese könnten u.a. die Anpassungsmöglichkeiten antarktischer Fische gegenüber Umweltveränderungen beeinträchtigen. Vergleichsweise dazu leben arktische, gadoide Fische in einem Gebiet mir größeren Umweltschwankungen. In Anbetracht desen wird sich die Klimaveränderung wahrscheinlich unterschiedlich auf Arktische und Antarktische Fische auswirken.Das Herz-Kreislaufsystems stenothermer Fischarten ist prinzipiell nur geringfügig auf Umweltveränderungen zu reagieren. Hierbei stellt die Herzfunktion einen Schlüsselfaktor dar. Studien deuten des Weiteren auf negative und interagierende Einflüsse von Ozeanerwärmung- und versauerung auf Embryos und Larvalen polarer Fischarten hin. Die Exposition der Fische gegenüber mehreren, kombinierten Umweltstressoren kann zudem zu Verschiebungen im Energiehaushalt führen. Diese können eine verringerte Energieverfügbarkeit für andere, lebensnotwendige Funktionen zur Folge haben.Der Antrag befasst sich mit der Frage, wie sich die Umweltstressoren anthropogene Umweltverschmutzung, Klimaerwärmung und Ozeanversauerung auf den Energiestoffwechsel verschiedener Lebensstadien arktischer und antarktischer Fische auswirkt. Die Kernfragen lauten:Beeinträchtigt das Zusammenspiel multipler Stressoren den Schadstoffstoffwechsel polarer Fische? Verursachen multiple Stressoren eine Verschiebung im Energiehaushalt arktischer und antarktischer Fische? Wie beeinflussen Schadstoffe die aerobe und Herzfunktion der verschiedenen Entwicklungsstadien polarer Fische?Was für negative Folgen könnten aus ökologischer Sicht für arktische Gadoiden und antarktische Notothenioiden draus resultieren?Der Antrag soll ein grundsätzliches Verständnis für molekulare, mitochondriale, zellulare und Stoffwechselprozesse schaffen, welche der Anfälligkeit polarer Fische gegenüber Umweltstressoren zugrundeliegen. Als Maß für evolutionäre Anpassungsfähigkeit sollen die Akklimationskapazitäten der verschiedenen Lebensstadien polarer Fische untersucht werden.Für einen Breitengraden-Vergleich von Toleranzen gegenüber Umweltfaktoren konzentriert sich der Antrag auf ökologisch und biologisch vergleichbare stenotherme Arten. Somit wird eine Datengrundlage geschaffen, um die evolutionär verschiedenen aber gleichermaßen stenothermen arktische und antarktische Fische vergleichen zu können.Die in diesem Antrag eruierte physiologische Empflindlichkeit polarer Fische gegenüber Klimawandel sollen abschließend dazu dienen, die zukünftigen Risiken menschengemachter Umweltrisiken für diese Tiere abgeschätzen zu können. Schließlich wird das Projekt eine Grundlage für Management- und Schutzmaßnahmen polarer Ökosysteme gegenüber fortschreitendem globalen Wandel bilden.

Prägung von Elite-Material über Protein-Hydrolysate in sterilen ökologischen Nährmedien

1 2 3 4 5