Rüdel, Heinz; Lepper, Peter; Steinhanses, Jürgen; Schröter-Kermani, Christa Environmental Science & Technology 37 (2003), 9, 1731-1738 In archived samples from the German Environmental Specimen Bank, organotin compounds including tributyltin (TBT) and triphenyltin (TPT) as well as their degradation products were quantified. Biota samples from North Sea and Baltic Sea areas were analyzed by gas chromatography/atomic emission detection-coupling after extraction and Grignard or ethylborate derivatization. TBT and TPT were detected in nearly all samples. A decrease of TPT contamination was observed in bladder wrack, common mussels, and eelpout muscle tissues in the period 1985-1999. In this period, TPT concentrations in North Sea mussels decreased from 98 to 7 ng/g (as organotin cation concentration in wet tissue). Concentrations of TBT remained relatively constant with 17 ± 3 ng/g for mussels from a site with nearby marine traffic and 8 ± 2 ng/g for a more remote area. The results reflect that TBT is still used an a biocide in antifouling paints whereas the use of TPT as a co-toxicant in such preparations had been ceased in the 1980s. The fact that the use of TBT in antifouling paints was banned in 1991 for small boats within the European Community seems not to have resulted in a decrease of TBT levels in marine biota. doi: 10.1021/es026059i
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), landesweit bewertet" gibt es noch eine Klassifikation des S-Wertes, die den S-Wert über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.
Die Gesamtfilterwirkung ist ein Kennwert zur Bewertung des Bodens als Filter für sorbierbare Stoffe und wird über das mechanische und physiko-chemische Filtervermögen bewertet. Unter sorbierbare Stoffe fallen insbesondere Stoffgruppen wie die Kationen der Nährstoffe, Schwermetalle und Organika, die entweder im Bodenwasser gelöst sind oder an kleinen Partikeln haften bzw. selbst in Partikelform vorliegen. In gelöster Form werden die genannten Stoffe an den Austauschern (Bodenmaterial) gebunden und so der Bodenlösung entzogen. In Partikelform werden sie im Boden gefiltert, wenn sie aufgrund mechanischer Hindernisse, wie z. B. am Ende von Wurmröhren, mit dem Sickerwasser nicht mehr weiter transportiert werden können. Die Gesamtfilterwirkung kann in Abhängigkeit von der Kationenaustauschkapazität und der Luftkapazität geschätzt werden. Das Schätzergebnis besteht aus insgesamt 11 Stufen, von denen in Schleswig-Holstein nur 8 relevant sind. Je höher die Stufe ist, desto höher ist die Gesamtfilterwirkung. Sie ist in feinkörnigem Bodenmaterial mit geringer Luftkapazität am größten, wie z. B. in der Marsch und im Östlichen Hügelland, und in grobkörnigem Bodenmaterial mit hoher Luftkapazität am geringsten, wie z. B. in der Vorgeest. Mit der Gesamtfilterwirkung wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das mechanische und physiko-chemische Filtervermögen des Bodens mit dem Kennwert Gesamtfilterwirkung. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung.
Die Karte "Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Schutzpotenzial der Grundwasserüberdeckung" bewertet die anstehenden Gesteine nach Beschaffenheit und Mächtigkeit im Hinblick auf ihr Vermögen, den oberen Grundwasserleiter vor der Befrachtung mit potenziellen Schadstoffen zu schützen. Das Grundwasser gilt dort als gut geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände und Grundwasseroberfläche eine lange Verweilzeit begünstigen. Das Schutzpotenzial wird summarisch drei Klassen zugeordnet, in denen unterschiedliche stoffmindernde Eigenschaften der Gesteine in der Grundwasserüberdeckung zusammengefasst dargestellt werden. • gering < 1m gering durchlässige Gesteine (Ton, Schluff) oder < 5m gut durchlässige Gesteine (Fein- bis Mittelsand) oder < 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • mittel 1 - 5m gering durchlässige Gesteine (Ton, Schluff) oder 5 – 10m gut durchlässige Gesteine (Fein- bis Mittelsand) oder > 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • hoch > 5m gering durchlässige Gesteine (Ton, Schluff) oder > 10m gut durchlässige Gesteine (Fein- bis Mittelsand) Grundsätzlich ist Grundwasser gegen Befrachtungen mit potenziellen Schadstoffen, die als flüssige Phasen oder gelöst mit den versickernden Niederschlägen eingetragen werden, überall dort geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände- und Grundwasseroberfläche eine lange Verweilzeit begünstigen, innerhalb der Stoffminderungsprozesse wirksam werden können. Bei den zu betrachtenden Stoffen können grob drei Gruppen unterschieden werden: • biologisch abbaubare Stoffe (z.B. bestimmte organische Verbindungen, Stickstoffverbindungen) • adsorbierbare Stoffe (z.B. bestimmte organische Verbindungen, Schwermetalle, einige Kationen von Salzen) • persistente Stoffe (z.B. bestimmte organische Verbindungen) Bei den Stoffminderungsprozessen, die durch lange Verweilzeiten in der ungesättigten Zone begünstigt werden, sind mehrere Kriterien zu berücksichtigen: • bei flüssigen Phasen spielt die Viskosität eine große Rolle, dünnflüssige Phasen können leicht durchsickern, während pastöse Phasen bereits im Boden zurückgehalten werden. • feste Phasen im Gestein oder an der Oberfläche werden je nach Löslichkeit unterschiedlich ausgewaschen • bei der Adsorption von Stoffen spielen die verfügbaren Oberflächen von Tonmineralen und der Gehalt an organischem Kohlenstoff eine übergeordnete Rolle. Die Versickerungsfähigkeit wässriger Lösungen beruht wesentlich auf der Durchlässigkeit der durchsickerten Gesteine. Diese wiederum hängt von den effektiven Hohlraumanteilen ab, die im Lockergestein durch den Porenraum, im Festgestein durch vernetzte Klüfte, Schichtfugen und Lösungshohlräume bestimmt werden. In die Klasse „gering“ sind die Gebiete eingestuft, in denen aufgrund sehr geringer Mächtigkeiten oder des Fehlens potenzieller Barrieregesteine (Ton, Schluff), bzw. geringer Flurabstände die Verweildauer von eingedrungenen Schadstoffen kurz ist und adsorptive Oberflächen kaum oder gar nicht vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) kaum stattfinden. In die Klasse „mittel“ sind die Gebiete eingestuft, in denen aufgrund mittlerer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. mittlerer Flurabstände die Verweildauer von eingedrungenen Schadstoffen mäßig ist und adsorptive Oberflächen in geringem Umfang vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) in beschränktem Maße stattfinden. In die Klasse „hoch“ sind die Gebiete eingestuft, in denen aufgrund großer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. großer Flurabstände bei durchlässigen Gesteinen die Verweildauer von eingedrungenen Schadstoffen groß ist und /oder adsorptive Oberflächen in hohem Umfang vorhanden sind (Ton). Daher können Stoffminderungsprozesse (Abbau, Adsorption) in besonders starkem Maße stattfinden. Potenzielle Reinigungsvorgänge im grundwassererfüllten Bereich bleiben außer Betracht. Festgesteinsgebiete wurden anhand des Grundwasserleitvermögens der oberflächennah anstehenden Gesteine beurteilt.
Die Biodiversität in Europa ist durch den Eintrag von Schad- und Nährstoffen in die Ökosysteme gefährdet. Innerhalb des PINETI-2 Projektes wurden daher die atmosphärischen Einträge dieser Schad- und Nährstoffe für Deutschland für die Jahre 2009, 2010 und 2011 ermittelt. Die trockenen, nassen und feuchten Einträge von NHx, NOy, SOx und die Einträge der basischen Kationen wurden berechnet und zur Gesamtdeposition aufsummiert. Die ermittelten mittleren Depositionsflüsse über Deutschland für Stickstoff und Schwefel betragen im Jahr 2009 1057 und 288 eq ha-1 a-1. In 2010 und 2011 liegen die mittleren Einträge für Stickstoff bei 1052 und 962 eq ha-1 a-1. Das Jahr 2009 war in Bezug auf das nationale Mittel meteorologisch gesehen ein durchschnittliches Jahr, so dass davon ausgegangen werden kann, dass auch die berechneten Einträge für das Jahr 2009 im nationalen Mittel eher bei einem langjährigen Mittel liegen als die Ergebnisse der Jahre 2010 oder vor allem 2011. Es wurden flächendeckende Karten für die unterschiedlichen Landnutzungsklassen erstellt. Die Karten zeigen, dass die Variabilität der Deposition über Deutschland signifikant ist. Die höchsten Einträge sind in Waldbeständen in oder in der Nähe von Regionen mit intensiver Landwirtschaft und Industrie zu finden. Im Vergleich zu den Ergebnissen des MAPESI-Vorhabens (Builtjes et al., 2011) sind die Ergebnisse der neuen Erhebung etwa 27% niedriger. Dies lässt sich durch eine Verbesserung der Methodik zur Bestimmung der nassen Deposition und der Konsolidierung neuer Prozessbeschreibungen im LOTOS-EUROS Modell erklären. Letztere Modellentwicklungen haben zu einem besseren Vergleich der Modellergebnisse zu Beobachtungen geführt. Die PINETI-2 Einträge stimmen besser mit Daten aus dem "Integrated Monitoring" Programm und mit der Depositionskartierung von EMEP überein als die MAPESI Ergebnisse. Der Vergleich mit Resultaten der Kronenraumbilanzmodellierung zeigt, dass sich die Unterschätzung dieser Daten im Vergleich zu MAPESI vergrößert hat. Die Unterschätzung ist an Standorten in Höhenlagen, an welchen ein erhöhter Eintrag durch feuchte Deposition anzunehmen ist, am größten. Die Bewertung des Eintrages in Bezug auf Risiken für terrestrische Ökosysteme wird im Teil 2 des Berichts beschrieben. Quelle: Forschungsbericht
Die Karte "Hydrogeologische Übersichtskarte von Niedersachsen 1 : 200 000 - Schutzpotenzial der Grundwasserüberdeckung" bewertet die anstehenden Gesteine nach Beschaffenheit und Mächtigkeit im Hinblick auf ihr Vermögen, den oberen Grundwasserleiter vor der Befrachtung mit potenziellen Schadstoffen zu schützen. Das Grundwasser gilt dort als gut geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände und Grundwasseroberfläche eine lange Verweilzeit begünstigen. Das Schutzpotenzial wird summarisch drei Klassen zugeordnet, in denen unterschiedliche stoffmindernde Eigenschaften der Gesteine in der Grundwasserüberdeckung zusammengefasst dargestellt werden. • gering < 1m gering durchlässige Gesteine (Ton, Schluff) oder < 5m gut durchlässige Gesteine (Fein- bis Mittelsand) oder < 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • mittel 1 - 5m gering durchlässige Gesteine (Ton, Schluff) oder 5 – 10m gut durchlässige Gesteine (Fein- bis Mittelsand) oder > 10m sehr gut durchlässige Gesteine (Grobsand, Kies, klüftiges oder verkarstetes Festgestein) • hoch > 5m gering durchlässige Gesteine (Ton, Schluff) oder > 10m gut durchlässige Gesteine (Fein- bis Mittelsand) Grundsätzlich ist Grundwasser gegen Befrachtungen mit potenziellen Schadstoffen, die als flüssige Phasen oder gelöst mit den versickernden Niederschlägen eingetragen werden, überall dort geschützt, wo gering durchlässige Deckschichten über dem Grundwasser die Versickerung behindern und wo große Flurabstände zwischen Gelände- und Grundwasseroberfläche eine lange Verweilzeit begünstigen, innerhalb der Stoffminderungsprozesse wirksam werden können. Bei den zu betrachtenden Stoffen können grob drei Gruppen unterschieden werden: • biologisch abbaubare Stoffe (z.B. bestimmte organische Verbindungen, Stickstoffverbindungen) • adsorbierbare Stoffe (z.B. bestimmte organische Verbindungen, Schwermetalle, einige Kationen von Salzen) • persistente Stoffe (z.B. bestimmte organische Verbindungen) Bei den Stoffminderungsprozessen, die durch lange Verweilzeiten in der ungesättigten Zone begünstigt werden, sind mehrere Kriterien zu berücksichtigen: • bei flüssigen Phasen spielt die Viskosität eine große Rolle, dünnflüssige Phasen können leicht durchsickern, während pastöse Phasen bereits im Boden zurückgehalten werden. • feste Phasen im Gestein oder an der Oberfläche werden je nach Löslichkeit unterschiedlich ausgewaschen • bei der Adsorption von Stoffen spielen die verfügbaren Oberflächen von Tonmineralen und der Gehalt an organischem Kohlenstoff eine übergeordnete Rolle. Die Versickerungsfähigkeit wässriger Lösungen beruht wesentlich auf der Durchlässigkeit der durchsickerten Gesteine. Diese wiederum hängt von den effektiven Hohlraumanteilen ab, die im Lockergestein durch den Porenraum, im Festgestein durch vernetzte Klüfte, Schichtfugen und Lösungshohlräume bestimmt werden. In die Klasse „gering“ sind die Gebiete eingestuft, in denen aufgrund sehr geringer Mächtigkeiten oder des Fehlens potenzieller Barrieregesteine (Ton, Schluff), bzw. geringer Flurabstände die Verweildauer von eingedrungenen Schadstoffen kurz ist und adsorptive Oberflächen kaum oder gar nicht vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) kaum stattfinden. In die Klasse „mittel“ sind die Gebiete eingestuft, in denen aufgrund mittlerer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. mittlerer Flurabstände die Verweildauer von eingedrungenen Schadstoffen mäßig ist und adsorptive Oberflächen in geringem Umfang vorhanden sind. Daher können Stoffminderungsprozesse (Abbau, Adsorption) in beschränktem Maße stattfinden. In die Klasse „hoch“ sind die Gebiete eingestuft, in denen aufgrund großer Mächtigkeiten potenzieller Barrieregesteine (Ton, Schluff), bzw. großer Flurabstände bei durchlässigen Gesteinen die Verweildauer von eingedrungenen Schadstoffen groß ist und /oder adsorptive Oberflächen in hohem Umfang vorhanden sind (Ton). Daher können Stoffminderungsprozesse (Abbau, Adsorption) in besonders starkem Maße stattfinden. Potenzielle Reinigungsvorgänge im grundwassererfüllten Bereich bleiben außer Betracht. Festgesteinsgebiete wurden anhand des Grundwasserleitvermögens der oberflächennah anstehenden Gesteine beurteilt.
Das Ziel der vorliegenden Studie war es, die Bioakkumulation vollständig ionisierter Verbindungen experimentell zu bestimmen und Screening-Parameter zu identifizieren, die auf ein hohes Bioakkumulationspotential von ionisierbaren organischen Chemikalien (IOCs) hinweisen können. Drei Fütterungsstudien mit Regenbogenforellen (Oncorhynchus mykiss) wurden gemäß OECD TG 305 durchgeführt. Die Trennung von Leber, Magen-Darm-Trakt (GIT) und Schlachtkörper ermöglichte eine weitere Aufklärung der Gewebeverteilung der einzelnen Testsubstanzen. Die ausgewählten Chemikalien wiesen Eigenschaften auf, die sie für eine hohe Bioakkumulation verdächtig machten, und umfassten zwei Kationen (Tetrabutylphosphonium-bromid (TBP), Trimethyloctadecylammoniumchlorid (TMOA)) und vier Anionen (Benzotriazol, Tecloftalam, Pentachlorphenol (PCP), MEE-Phosphonat). Die höchsten Verteilungsfaktoren wurden für die GIT gefunden, gefolgt von der Leber. Keine der getesteten IOCs zeigte jedoch ein ausgeprägtes Biomagnifikationspotential, da die kinetischen Biomagnifikationsfaktoren (BMFk) zwischen 0,001 und 0,05 g / g lagen (Median 0,009 g / g). Die getesteten Kationen zeigten mit Ausnahme von Tecloftalam eine geringere Assimilationseffizienz (ÎÌ) (siehe OECD TG 305) als die Anionen. Im Gegensatz dazu zeigten die getesteten Anionen eine erheblich schnellere Depurationsrate (Halbwertszeit weniger als 0,5 Tage) als die Kationen (Halbwertszeit von etwa 5 Tagen). Zwanzig mögliche Screening-Parameter für das Biomagnifikationspotential ionisierter Verbindungen wurden mit verfügbaren Schätzwerkzeugen (ACD / i-Lab und COSMOmic) berechnet und mit BMF-Daten aus dieser Studie und aus der Literatur korreliert. Der COSMOmic KFisch / Wasser zeigte die höchste Korrelation zum gemessenen BMF, während die meisten anderen Deskriptoren nicht signifikant korrelierten. Das vermutete Bioakkumulationspotential der sechs IOC nach Aufnahme über die Nahrung konnte in den Fütterungsstudien mit Regenbogenforellen nicht bestätigt werden. Keiner der mehr als zwanzig Screening-Parameter zeigte eine besonders hohe Korrelation mit den Testergebnissen oder den aus der Literatur gesammelten BMF-Werten. Insgesamt kann aus dem Screening geschlossen werden, dass die Ionisierung einer Chemikalie die Tendenz zur Bioakkumulation im Vergleich zu nichtionisierten Chemikalien verringert. Eine schnelle Depuration scheint ein Hauptgrund für die beobachtete geringe Biomagnifikation ionischer Verbindungen, insbesondere der Anionen, zu sein. Aufgrund des schnellen Metabolismus oder der Konjugation geladener Verbindungen kann es zu einer schnellen Depuration kommen. Zukünftige Studien sollten diese Hypothese überprüfen. Quelle: Forschungsbericht
Die Grundwasserbeschaffenheit wird von einer größeren Anzahl von Faktoren beeinflusst, so u.a. von der Beschaffenheit von Niederschlag und Uferfiltrat, der Zusammensetzung des Kontaktgesteins, der Verweilzeit des Wassers im Untergrund, der Temperatur im Untergrund, der anthropogenen Einträge und der Mischungsprozesse.Hier sind Grundwassertypen dargestellt, wie sie in den einzelnen hydrogeologischen Einheiten oberflächennah bei geringer bis fehlender anthropogener Belastung und einer Grundwasserneubildung aus dem Niederschlag auftreten. Der Grundwassertyp wird in diesen Fällen mit Ausnahme der geringmineralisierten Wässer (s.u.) überwiegend durch die mineralogische Zusammensetzung des Kontaktgesteins bestimmt.Bei der Darstellung sind chemische Entwicklungen infolge erhöhter Temperaturen oder langer Verweilzeiten sowie hydrochemische Veränderungen der gesteinsgebundenen Grundwasserbeschaffenheit durch Mischungsprozesse als Folge der Grundwasserdynamik nicht berücksichtigt.Für die hydrochemische Klassifikation der Wässer wurden einerseits der Lösungsinhalt, andererseits die relative Verteilung der überwiegenden Kationen und Anionen benutzt.Nach dem Lösungsinhalt wurden vier Klassen gebildet:Wässer mit geringem Lösungsinhalt (etwa 50 - 200 mg/kg)Wässer mit mittlerem Lösungsinhalt (etwa 200 - 700 mg/kg)Wässer mit mittlerem bis vereinzelt höherem Lösungsinhalt (etwa 500 - 2500 mg/kg)Wässer mit stark schwankendem LösungsinhaltDie Kationen und Anionen wurden getrennt gemäß ihren prozentualen Anteilen (als mmol(eq) %) geordnet; bei Äquivalentanteilen über 20 % wird das jeweilige Ion bei der Klassifikation berücksichtigt (HÖLTING 1996).Für die hydrochemische Typisierung wurden die 54 hydrogeologischen Einheiten auf 17 hydrogeochemische Einheiten reduziert. Zusammengefasst wurden solche Einheiten, die eine vergleichbare petrographische Zusammensetzung aufweisen und deshalb einen einheitlichen geogenen Grundwassertyp erwarten lassen.
Das Landesmessnetz Grundwassergüte wird seit 1992 kontinuierlich aufgebaut. Es besteht gegenwärtig aus etwa 80 Grundwassermessstellen an 65 Standorten; davon sind 35 in oberflächennahen Grundwasserleitern verfiltert. Es sind die Stammdaten der einzelnen Messstellen (Lage, Beobachtungszeitraum, hydrogeologische Einordnung usw.) und die Ergebnisse der durchgeführten Analysen erfasst. Vorliegende Analysenergebnisse: Vorortparameter (z.B. Färbung, Trübung, Geruch, Temperatur), physikalisch-chemische Parameter (z.B. Leitfähigkeit, Sauerstoffgehalt, Härte), Anionen, Kationen (Chlorid, Sulfat, Nitrat, Phosphor usw.), organische Spurenstoffe und Summenparameter, anorganische Spurenstoffe, teilweise auch mikrobiologische Kriterien. Die Probenahme und Analytik wird zweimal im Jahr durchgeführt. Neue Messstellen werden im ersten Jahr einer Vollanalyse (alle Parameter) unterzogen. Die organischen Spurenstoffe werden danach nur alle 3 Jahre, die anorganischen Supurenstoffe alle 2 Jahre analysiert. Nur bei Auffälligkeiten wird der Mess-Rhythmus verkürzt. Unter Beachtung der Beeinflussungstypen des Grundwassers und der geogenen Hintergrundwerte bilden diese Daten eine wichtige Beurteilungsgrundlage über die Auswirkungen anthropogener Nutzungen wie Landwirtschaft (Nitrateinträge, Pflanzenschutzmittel) bzw. Abwasserversickerung.
Origin | Count |
---|---|
Bund | 355 |
Land | 83 |
Type | Count |
---|---|
Förderprogramm | 320 |
Kartendienst | 6 |
Text | 28 |
Umweltprüfung | 1 |
unbekannt | 66 |
License | Count |
---|---|
geschlossen | 90 |
offen | 327 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 417 |
Englisch | 72 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 1 |
Dokument | 8 |
Keine | 320 |
Unbekannt | 6 |
Webdienst | 3 |
Webseite | 91 |
Topic | Count |
---|---|
Boden | 327 |
Lebewesen & Lebensräume | 321 |
Luft | 246 |
Mensch & Umwelt | 418 |
Wasser | 275 |
Weitere | 421 |