In der Bundesrepublik Deutschland, insbesondere im Umfeld Thueringens gibt es eine Vielzahl von Altlasten, die mit den verschiedenen Verfahren der Bodenreinigung saniert werden koennen. Bei kostenguenstigen Verfahren, wie z.B. der Bodenwaesche, bleiben bestimmte Schadstoffraktionen als hochbelastete Waesser und Schlaemme zurueck. Soweit es bei dem derzeitigen Stand der Technik wirtschaftlich moeglich ist, koennen sie weiter aufbereitet werden. Hier kommen verschiedene Verfahren, u.a. Einsatz von Aktivkohle, Hochleistungsbiologie, Strippen, und die chemische Oxidation zum Einsatz. Zur Entwicklung weiterer Verfahren zu diesem Zweck ist es erforderlich, begleitende Untersuchungen der einzelnen Verfahrensschritte zu taetigen, um somit zur Verfahrensoptimierung beizutragen und neuartigen Verfahren den Weg zur Einsatzfaehigkeit zu ebnen. Das Forschungsprojekt soll das Profil der Fachhochschule Erfurt in der Umweltanalytik erweitern sowie Gelegenheit geben, ein ueber den Durchschnitt hinausreichendes Fachwissen zu etablieren. Es soll insbesondere dem Fachbereich Versorgungstechnik, der den Aufbaustudiengang Umwelttechnik mit beinhaltet, ermoeglichen, Wirtschaftsunternehmen vor allem in Thueringen Kooperationsmoeglichkeiten anzubieten, die diese fuer die Entwicklung geeigneter Erzeugnisse, Verfahren und Anlagen nutzen koennen, um somit ihre Wettbewerbsfaehigkeit zu steigern.
Die Reaktionskinetik der Oxidation von Schwefelwasserstoff zu Schwefel mit Luftsauerstoff an Aktivkohle soll aufgeklaert werden. Weiterhin soll geprueft werden, ob sich andere Adsorbentien wie z.B. Kieselgel, Molekularsieb usw. als Katalysatoren eignen. Die katalytische Oxidation des Schwefelwasserstoffs wird bei verschiedenen Versuchsbedingungen - H2S-Konzentration, Feuchtigkeit der Luft, Temperatur, Verweilzeit, Beladungsgrad des Adsorbens usw.- untersucht, wobei die zeitliche Konzentrationsaenderung von Schwefelwasserstoff sowie von eventuell gebildetem Schwefeldioxid gaschromatographisch mit einem schwefelempfindlichen flammenphotometrischen Detektor gemessen wird. Die Oxidationsprodukte von H2S in einer Aktivkohlesuspension in Abhaengigkeit von den Reaktionsbedingungen werden untersucht.
Sehr geehrte Damen und Herren, gerade lese ich in der Fachzeitschrift, dass wieder neue Krebsmedikamente auf den Markt kommen. Nach den ADCs nun die HIF-2a-Inhibitoren. Wie ist genau Ihre Zusammenarbeit in Bezug auf die zu erwartenden Umweltemissionen der Arzneimittel (als Abfall, als Ausscheidungsprodukt in Gewässer) 1. mit den entwickelnden Forschungseinrichtungen? 2. mit den herstellenden Pharmafirmen? 3. mit den entsorgenden Firmen und Kläranlagen? Dabei stellen sich mir einige Fragen: 1. Warum werden die verpflichtenden Sicherheitsdatenblätter nicht auf die relevanten Inhalte geprüft? - oft steht nur 'nicht bekannt' oder 'nicht geprüft' drinnen. 2. Warum werden für die Entsorgung nicht von vorne herein auch die Pharmafirmen zur Kasse gebeten? Es werden Chemikalien und Chemikaliengemische in die Umwelt entlassen, von denen im Prinzip oft NICHTS bekannt ist. 3. Warum ist eine 4. Klärstufe, z.B. mit Aktivkohle nicht schon längst Standard? Nachweislich - siehe das Projekt 'Schussen aktiv' vor mehr als 10 Jahren (!!!) - werden nur damit die meisten Chemikalien/Medikamente aus dem Wasser geholt. 4. Warum müssen die Krankenhäuser ihre Abfälle nicht generell mit höheren Temperaturen verbrennen lassen? Ich weiß, dies kostet mehr, aber bei unter 1200 Grad werden Chemikalien eben nicht vollständig zerstört. Man muss sich nicht wundern, warum Gadolinium - nur ein Beispiel - sogar im ewigen Eis gefunden wird. Ihre Institution ist für den Schutz der Bürger hier im Land für diese Sachverhalte zuständig.
Nordrhein-Westfalen nimmt beim Thema PFAS eine bundes- und europaweite Vorreiterrolle ein. Seit dem ersten großen Umweltskandal 2005/2006 im Sauerland hat das Landesamt für Natur, Umwelt und Klima (LANUK) konsequent daran gearbeitet, PFAS-Belastungen systematisch zu erfassen und zu bewerten. Die intensive und flächendeckende Messstrategie ist der Schlüssel: Je mehr und gezielter gemessen wird, desto mehr kann auch gefunden und verstanden werden – das bedeutet jedoch nicht, dass NRW stärker belastet ist als andere Regionen, sondern dass durch das sehr dichte Messnetz und die analytische Expertise mehr Wissen aufgebaut wurde. „Die Entdeckung der PFAS-Belastung in Brilon-Scharfenberg war der Startpunkt für ein integriertes, medienübergreifendes Überwachungsprogramm der Gewässerqualität.“ betonte LANUK-Präsidentin Elke Reichert heute (Freitag, 27. Juni 2025) auf der Jahrespressekonferenz ihrer Behörde in Duisburg. „Die Konsequenzen von PFAS für Mensch und Umwelt waren bis dahin nicht bekannt. Dass wir heute die Risiken dieser Stoffgruppe bewerten können, ist das Ergebnis jahrzehntelanger analytischer, wissenschaftlicher und regulatorischer Pionierarbeit.“ Bis heute wurden in NRW an über 500 verschiedenen Messpunkten PFAS-Proben genommen. Die Messstellen liegen in 360 berichtspflichtigen Gewässerabschnitten, die sich wiederum auf mehr als 230 Gewässer im Land NRW verteilen. Im Rahmen des Monitorings zur Wasserrahmenrichtlinie werden an 46 Überblicksmessstellen bis zu 13 mal pro Jahr Wasserproben genommen. Alle weiteren Messstellen werden in einem dreijährigen Turnus beprobt. Hinzu kommen Grundwassermessungen und Probenahmen aus den Abläufen von Kläranlagen. Die Zahl der jährlichen Einzelanalysen in den LANUK-Laboren auf PFAS-Substanzen in den verschiedenen Wassermedien ist seit Beginn der Untersuchungen stetig angestiegen. Zuletzt waren es im Jahr 2024 fast 20.000. „Insgesamt sehen wir eine sinkende Belastung unserer Gewässer mit einzelnen PFAS-Verbindungen“, erklärte Dr. Friederike Vietoris, Leiterin der Abteilung Wasserwirtschaft und Gewässerschutz im LANUK. „Allerdings werden wir durch mehr Messungen an immer mehr Stellen und Auswertungen immer mehr Stoffen finden. Die Zahl der PFAS-Fundstellen in NRW nimmt daher tendenziell immer weiter zu. Dies ist nicht zu verwechseln mit einer überdurchschnittlichen Belastung, die ist nicht höher als in anderen Teilen Deutschlands. Sie ist das Ergebnis unserer konsequenten und flächendeckenden Messstrategie.“ An der Ruhr konnte beispielsweise die Belastung seit dem Jahr 2006 stetig gesenkt werden. Aktuell werden hier an den Messstationen Fröndenberg und Mülheim Kahlenberg bei der PFAS-Verbindung „PFOS“ noch ein durchschnittlicher Jahreswert von etwa 3 Nanogramm pro Liter (ng/L) gemessen. Der Ausgangswert lag in den Jahren 2006 und 2007 zwischen 20 und 30 ng/L. Die in NRW angestrebte Umweltqualitätsnorm von 0,65 ng/L wird allerdings hier noch nicht erreicht. Eine vergleichbare Situation zeigt sich in NRW am Rhein. Am Eingang des Rheins nach NRW in Bad Honnef und am Ausgang in Kleve Bimmen werden aktuell im Jahresschnitt 2,5 ng/L PFOS gemessen. Fürs Trinkwasser gilt ab dem 12. Januar 2026 erstmals ein bundesweit verbindlicher Grenzwert: Für die Summe von 20 PFAS-Verbindungen sind dann 100 ng/L erlaubt. Der 20er Summenwert wurde im Jahr 2023 an 643 Proben überprüft. Überschreitungen dieses zukünftigen Grenzwertes wurden dabei nicht festgestellt. „Unser Ziel ist – auch aus Vorsorgegesichtspunkten - bereits in den Trinkwasserressourcen, also im Grund-und im Oberflächenwasser die Belastung stark zu reduzieren.“, betonte Dr. Vietoris. „Es ist zu erwarten, dass neben den Grenzwerten fürs Trinkwasser weitere verbindliche Umweltqualitätsnorm für Oberflächengewässer und für das Grundwasser eingeführt wird. Die intensive Messstrategie des LANUK verschafft uns hier einen Vorsprung – wir können schon jetzt abschätzen, wo Handlungsbedarf besteht und gezielt Maßnahmen einzuleiten sind, um die neuen Anforderungen der EU in der gesamten Wasserphase einzuhalten.“ „Wir wissen heute, dass PFAS in der Umwelt ubiquitär vorkommen“, so das Fazit von LANUK-Präsidentin Elke Reichert. „Dennoch sind wir hier in NRW durch unsere konsequente Messstrategie, die Entwicklung neuer Analyseverfahren und die enge Zusammenarbeit mit Wissenschaft, Behörden und Ministerien bestens aufgestellt. Wir als LANUK werden damit unseren Teil dazu beitragen, die Anforderungen an den Schutz von Mensch und Umwelt bestmöglich zu erfüllen.“ Nach den ersten auffälligen Werten im Rhein im Jahr 2005, konnte die Quelle der Belastung bis in die Ruhr in der Gemeinde Brilon-Scharfenberg im Hochsauerlandkreis zurückverfolgt werden. Im Jahr 2006 startete das LANUK ein umfassendes Monitoring- und Untersuchungsprogramm, das bis heute kontinuierlich weiterentwickelt wird. Ziel war es von Anfang an, die Verbreitung, Quellen und Ausbreitungswege von PFAS systematisch zu erfassen und zu bewerten. Bereits 2007 wurden erste Analyseverfahren für zehn PFAS-Substanzen entwickelt – heute können rund 50 Einzelsubstanzen differenziert nachgewiesen werden. Damit wurden aus NRW heraus die wissenschaftlichen Grundlagen für Grenzwerte und effektive Maßnahmen entwickelt – nicht nur für NRW, sondern für ganz Deutschland und in der EU. Das LANUK-Gewässer- und Abwassermonitoring bildet somit die Grundlage für Maßnahmen zur Reduzierung von PFAS-Einträgen in die Umwelt. Dazu gehört beispielsweise die Behandlung von Abwasser mit Aktivkohle, das Verbot der Klärschlammausbringung und die Sanierung von Altlasten. Auch spezielle Fragestellungen, wie die Untersuchung von Löschwasser nach Brandereignissen, wurden und werden bearbeitet. 2006–2008: Ab 2007: Ab 2010: Seit 2015: Heute: Seit 2006 untersucht das LANUK: PFAS (per- und polyfluorierte Alkylsubstanzen) umfassen mehrere Tausend synthetische Verbindungen. Sie wurden entwickelt, um extrem beständig zu sein – gegen Hitze, Wasser, Öl, Schmutz. Diese Eigenschaften machten sie attraktiv für viele industrielle und alltägliche Anwendungen: Feuerlöschmittel, Galvanik, Beschichtungen, Outdoor-Produkte oder Lebensmittelverpackungen. Doch genau diese „Unzerstörbarkeit“ macht PFAS in der Umwelt und im menschlichen Körper gefährlich: Sie bauen sich nicht ab, reichern sich an und gelten als toxisch – manche sogar krebserregend oder hormonell wirksam. Nach aktuellem Wissenstand besteht gibt es mehr als 10.000 unterschiedliche PFAS-Verbindungen. Weitere Informationen sind zu finden beim LANUK unter https://www.lanuk.nrw.de/themen/themenuebergreifende-aufgaben/gefahrstoffe/pfas Ausführliche Antworten auf häufig gestellte Fragen sind zu finden beim Umweltbundesamt unter https://www.umweltbundesamt.de/faq-0 zurück
Die industrielle Nutzung des Grundstücks ist seit 1911 als Betriebsfläche zur Herstellung von nummerierten Spezial-Kontrolldruckerzeugnissen (Paragon Kassenblock AG) und Lager für Beleuchtungsköpern (R. Frister AG) dokumentiert. Von 1940 bis 1945 erfolgte die Produktion von Farben durch die Lackfabrik Dr. Werner. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten (VEB Haushaltsgeräteservice später Haushaltsgeräte-Service GmbH). Danach (bis etwa 2006) wurden die Flächen an Unternehmen des Klein- und Mittelgewerbes vermietet. Aus der Nutzung des Grundstücks zur Herstellung und Verarbeitung von Lackfarben wurde ein unterirdisches Tanklager mit ca. 20 Einzelbehältern betrieben. Zur Herstellung der Produkte wurden auf der Fläche die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylol, Naphthalin, Petroleum, Schwerbenzin, Vergaserkraftstoffe, Terpentinöl sowie diverse alkoholische Verbindungen eingesetzt, gelagert und umgeschlagen. In Vorbereitung einer Erweiterung des Gebäudebestandes an der Freifläche zur Fuststraße erfolgte 1980 die Bergung des Tanklagers, wodurch es zu nachweisbaren Schadstoffaustritten kam. Es ist davon auszugehen, dass es auch durch den unsachgemäßen Umgang mit den für die Lackfarbenproduktion verwendeten Gefahrstoffen zu Schadstoffeinträgen in den Untergrund kam. Als Folge der Schadstoffeinträge in den Boden wurden durch die nachstehend beschriebenen Erkundungen massive Kontaminationen des Bodens durch BTEX (untergeordnet PAK und MKW) nachgewiesen. Die höchsten Belastungen wurden mit über 5.000 mg/kg BTEX bei 6 – 9 m unter Geländeoberkante (uGOK) unterhalb des ehem. Druckereigebäudes angetroffen. Die besondere Gefährdungssituation ergibt sich aus der Lage des Standortes innerhalb der Trinkwasserschutzzone II des Wasserwerks Wuhlheide . In einer frühen Phase der Altlastensanierung konzentrierten sich die In einer frühen Phase der Altlastensanierung konzentrierten sich die Erkundungen auf die Eingrenzung der Schadensherde für die Planung und Umsetzung von hydraulischen Sicherungsmaßnahmen zur Verhinderung der Verlagerung der Kontamination zu den Fassungen des Wasserwerks Wuhlheide (Abstromsicherung). Mit fortschreitender Bearbeitungsdauer zielten die Arbeiten zunehmend auf die Vorbereitungen zur Sanierung der Belastungen in den Eintragsbereichen/ Schadensherden. Zur Bewertung und Beobachtung der Grundwasserbeschaffenheit sowie der Steuerung der hydraulischen Sicherungs-/ Sanierungsmaßnahmen wurde zwischen 1995 und 2004 ein Netz von Messpegeln geschaffen, welches regelmäßig auf die standortspezifischen Parameter hin analysiert wurde. In 2005/2006 wurde das Messnetz auf der Basis der Ergebnisse einer teufenorientierten Beprobung des Grundwassers erweitert. Im Zuge der Baufeldfreimachung zur Bodensanierung ist baubedingt eine Reduzierung des Bestandes erfolgt. Derzeit liegt der Fokus des Grundwassermonitorings als Nachsorgemaßnahme auf der Überwachung der Grundwasserqualität an der Grundstücksgrenze im unmittelbaren Zustrom zu den Förderbrunnen des Wasserwerks Wuhlheide. Seit 1995 wurde zum Schutz der nahe gelegenen Förderbrunnen des Wasserwerks eine hydraulische Sicherungs-/ Sanierungsmaßnahme durchgeführt. Die Technologie der Reinigung des geförderten Grundwassers wurde im Zeitraum von 2002 bis 2006 entsprechend dem Stand der Technik, der Schadstoffzusammensetzung sowie anderen speziellen Problematiken mehrfach angepasst. Zur Optimierung des Schadstoffaustrags wurde die Brunnenanzahl erhöht und ein hydraulischer Kreislauf für eine bessere Durchspülung des Aquifers erzeugt. Im Ergebnis der durchgeführten Sanierungsuntersuchungen zeigte sich, dass allein durch hydraulische Maßnahmen keine ausreichende Schadstoffreduzierung erzielt werden konnte. Daher wurde die Beseitigung der Schadstoffquellen mittels Bodenaustausch festgelegt, die 2007/2008 begonnen und 2011 abgeschlossen wurde. Einen chronologischen Abriss der einzelnen Sanierungsetappen zeigt die folgende Abbildung. 1995 – 2002: Sicherungs-/Sanierungsmaßnahme durch Förderung aus 2 Sicherungsbrunnen an derabstromigen Grundstücksgrenze und später zusätzlich aus 2 Sanierungsbrunnen in den damals bekannten Hauptschadensbereichen. 06/2002 – 12/2006: Umstellung der Reinigungstechnologie auf einen biologischen Wirbelschichtreaktor als Hauptreinigungsstufe, in dem Aktivkohle als Trägermaterial für Biomasse umlaufartig oszilliert, mit Erhöhung der Förderrate. Abschließende Adsorption mittels Wasseraktivkohle. 01/2007 – 08/2008: Außerbetriebnahme eines Teils der Brunnen im Hauptschadensbereich infolge der vorbereitenden Arbeiten zur Bodensanierung. 09/2008 – 12/2008: Abschluss der hydraulischen Sanierung im Bereich der Bodensanierung. Reinigung des abgepumpten Grundwassers über einstufige Stripanlage mit Abluftadsorption mit nachgeschalteten Wasseraktivkohlefiltern. 2009 – 2012: Sukzessive Außerbetriebnahme der Förderbrunnen (hydraulische Sicherung) nach dem Erreichen des Sanierungszielwertes von 20 µg/L BTEX. Im Jahr 2007 wurde mit dem Beginn des Teilabrisses der vorhandenen Gebäudesubstanz sowie einem Industrieschornstein aus Betonfertigteilen (einschl. vorlaufender Entkernung und nachlaufender Tiefenenttrümmerung) die Bodensanierung eingeleitet. In einem 1. Bauabschnitt (2008 – 2009) wurde der Bodenaustausch in der gesättigten Zone auf einer Fläche von ca. 2.100 m² in dem zentralen Grundstücksbereich bis in eine Tiefe von 11 m uGOK mittels Rüttelsenkkästen (Wabenverfahren) durchgeführt. Der vorlaufende Bodenaushub zur Beseitigung gering belasteter Bodenhorizonte bis ca. 0,5 m oberhalb des anstehenden Grundwasseranschnittes wurde mit einer Trägerbohlwand gesichert. In einem Teilbereich der Sanierungsfläche wurde dem sauberen Boden ein sauerstoffhaltiges Substrat beigefügt, das durch die Schaffung eines oxidativen Milieus zu einer Verringerung der verbliebenen Restbelastungen durch mikrobielle Abbauprozesse im Grundwasser beitragen sollte. In einem 2. Bauabschnitt (2010) erfolgte der Bodenaustausch im nördlichen Randbereich des Standortes mittels Großlochbohrungen bis zu einer Tiefe von 9 m uGOK an 757 Bohransatzpunkten (DN 1200). Nachfolgend finden sich die mit der Bodensanierung angefallenen Entsorgungsmengen zusammengefasst: Zur weiteren Überwachung des Sanierungserfolgs und zum Schutz der nahe gelegenen Fassungen des Wasserwerks Wuhlheide ist die Fortsetzung des Grundwassermonitorings mit viertel- oder halbjährlichen Beprobungskampagnen als Nachsorgemaßnahme vorgesehen. Die Beobachtung von Verlagerungen aus verbliebenen lokalen Belastungsschwerpunkten erfolgt mittels Modellrechnungen (Stofftransportmodellierungen) und bei Bedarf durch Errichtung zusätzlicher Grundwassermessstellen. Die Gesamtkosten aller Maßnahmen belaufen sich bis Ende 2018 auf ca. 8,77 Mio. €. Bedingt durch die Lage des Standortes in der Trinkwasserschutzzone II des Wasserwerks Wuhlheide, die eine Neubebauung der sanierten Flächen derzeit ausschließt, ist die zukünftige Nutzung noch offen.
Die bei der Begasung von Getreide in einer Muehle entstehenden unkontrollierten hochgiftigen Methylbromid-Emissionen werden vollstaendig vermieden und das eingesetzte Insektizid zurueckgewonnen und wiederverwertet. Hierzu ist folgende Verfahrenstechnik vorgesehen. Das eingesetzte Giftgas wird vor der Begasung auf einem Adsorberspeicher (Aktivkohle) gebunden und erst mit der zu begasenden Raumluft aus dem Adsorptionsmittel ausgetrieben und in die Muehle geleitet. Nach erfolgter Begasung wird durch umgekehrte Regelung von Temperatur und Druck die mit Schadstoff beladene Raumluft wieder durch das Adsorptionsmittel geleitet, wobei das Giftgas an der Aktivkohle adsorbiert wird. Mittels eines Hochleistungsgeblaeses mit Drosselventil wird ein fuer die Adsorption guenstiger Unterdruck von etwa 0,5 bar und ein fuer die Begasung (Desorption) entsprechender Unterdruck erzeugt. Durch mehrere Absperrhaehne koennen Adsorption und Desorption im Gegenstrom zueinander gefuehrt werden. Das Giftgas wird im Adsorber gespeichert und steht mit einer fahrbaren Anlage fuer eine weitere Nutzung zur Verfuegung. Durch Verringerung des Raumvolumens mittels eines aufblasbaren Verdraengungskoerpers kann der Begasungsaufwand zB bei geometrisch regelmaessig gestalteten leeren Siloraeumen deutlich gesenkt werden. Durch Anpassen der Stufenzahl der Adsorberspeicher an das Begasungsvolumen wird erreicht, dass die Adsorber immer mit annaehernd gleichen spezifischen Bedingungen arbeiten. Die Entsorgung kann durch diese mobile Anlage aeusserst wirtschaftlich durchgefuehrt werden.
Veranlassung Es fehlen schnelle und vor allem feldtaugliche Methoden zur Detektion von PFAS in der Umwelt, um so zeitnah Maßnahmen zur Minderung von PFAS-Kontaminationen durchzuführen oder den Erfolg von Minderungsmaßnahmen zu beurteilen. Entsprechende Methoden können ebenso helfen, die Prozesssteuerung einer Abwasserbehandlung zur Entfernung von PFAS z. B. durch eine Aktivkohlebehandlung zu optimieren. Das Projekt PFASense hat sich zum Ziel gesetzt, eine solche Methode zu entwickeln. Hierzu werden Elektroden hergestellt, die a) entweder für eine spezifische Detektion perflourierter Verbindungen oberflächenmodifiziert sind und b) biologische Effekte, die durch perflourierte Verbindungen hervorgerufen werden können, mit mikrobiellen Bioreportern elektrochemisch erfassen. Mit den individuellen Signalen der einzelnen Elektroden wird eine KI trainiert und auf diese Weise ein Sensor-Array zur sensitiven Detektion der großen Stoffgruppe der perfluorierten Verbindungen in Umweltproben entwickelt. Ziele - a. Design und Herstellung von molekular geprägten Membranen zur Anreicherung spezifischer PFAS. - b. Design und Herstellung elektrochemischer, bakterieller Biosensoren zur Detektion biologischer Effekte, die durch PFAS hervorgerufen werden. - c. Design und Herstellung elektrochemischer, hefebasierter Biosensoren zur Detektion einer Veränderung der Thyroid-Signalkaskade durch PFAS. - d. Design und Herstellung eines intelligenten elektrochemischen Sensors für die direkte chemische Detektion von PFAS mittels KI-gestützter Datenauswertung. - e. Konstruktion eines mikrofluiden multi-Sensor-Arrays unter Nutzung der in a. bis d. entwickelten Komponenten. - f. Validierung und Eignungstestung des entwickelten Sensor-Arrays mittels Einzelsubstanzen, Substanzmischungen sowie dotierten und undotierten Realproben mit einem Fokus auf industriellen Abwässern. Ziel des Vorhabens ist die Entwicklung einer innovativen technologischen Lösung für die folgende Fragestellung: Wie kann man zeitnah Informationen über die Qualität von z. B. Abwässern erhalten, ohne auf verzögert zur Verfügung stehende, analytische Informationen aus einem Labor angewiesen zu sein? Dieser Bedarf an zeitnahen Informationen für eine Bewertung von Abwasser und Wasserproben kann perspektivisch mittels eines bio-elektrochemischen Sensorarrays gedeckt werden, der im Rahmen des Projekts für den Nachweis von Per- und Polyfluoralkylsubstanzen (PFAS) entwickelt wird. PFAS werden in zahlreichen Produkten verwendet, darunter wässrige filmbildende Schäume für die Brandbekämpfung, antihaftbeschichtetes Kochgeschirr, Lebensmittelverpackungen, wasserabweisende Stoffe, medizinische Geräte, Kunststoffe und Lederprodukte. PFAS werden jedoch mit verschiedenen, toxikologisch relevanten Effekten in Verbindung gebracht, wie mit veränderten Immun- und Schilddrüsenfunktionen, Leber- und Nierenerkrankungen, Lipid- und Insulinstörungen, Fortpflanzungs- und Entwicklungsstörungen oder auch der Krebsentstehung. Als unmittelbare Folge dieser Gesundheitsrisiken hat die Europäische Kommission einen Vorschlag zur Überarbeitung der Liste der prioritären Stoffe in Oberflächengewässern angenommen, unter denen 24 Verbindungen zur Gruppe der PFAS gehören.
| Origin | Count |
|---|---|
| Bund | 614 |
| Land | 23 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 30 |
| Daten und Messstellen | 10 |
| Ereignis | 3 |
| Förderprogramm | 544 |
| Gesetzestext | 24 |
| Infrastruktur | 10 |
| Text | 46 |
| Umweltprüfung | 6 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 85 |
| offen | 552 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 626 |
| Englisch | 34 |
| Resource type | Count |
|---|---|
| Bild | 4 |
| Datei | 10 |
| Dokument | 24 |
| Keine | 514 |
| Webseite | 105 |
| Topic | Count |
|---|---|
| Boden | 428 |
| Lebewesen und Lebensräume | 394 |
| Luft | 336 |
| Mensch und Umwelt | 638 |
| Wasser | 502 |
| Weitere | 610 |