API src

Found 1741 results.

Related terms

Autonomes Biomonitoring - Ein Citizen-Sciences-Projekt zur Überwachung der Wasserqualität und der toxischen Algenblüte unter dem Einfluss des Klimawandels, Teilprojekt B

Autonomes Biomonitoring - Ein Citizen-Sciences-Projekt zur Überwachung der Wasserqualität und der toxischen Algenblüte unter dem Einfluss des Klimawandels

Kurzzeitdynamik des Sediment-Phytoplankton-Nährstofftransports in Flachgewässern

Algenblüten stellen eines der Hauptprobleme für die Wasserqualität vieler Seen und Küstengewässer dar. Trotz der Reduzierung externer Nährstoffeinträge treten sie wiederholt auf. Der Hauptgrund dafür wird in der pulsartigen Freisetzung von Nährstoffen, die in den Sedimenten der betroffenen Gewässer angereichert sind, gesehen. Daten zur Kinetik solcher Nährstoffpulse (Ursachen, Mengen) liegen aber kaum vor und die unmittelbaren Effekte auf das Phytoplankton sind bislang unerforscht. Das liegt vor allem daran, dass Methoden für zeitlich hochauflösende in-situ-Messungen erst in den vergangenen Jahren in größerem Umfang verfügbar wurden. Ihr Einsatz ist sehr arbeitsaufwändig und nur in begrenztem Zeitrahmen realisierbar. Dennoch gibt es in der Fachliteratur zahlreiche Beispiele für pulsartige Nährstofffreisetzungen (NSF), die im Rahmen von Monitoringprogrammen dokumentiert wurden. Dabei handelt es sich meist um sprunghafte Erhöhungen von Nährstoffkonzentration nach plötzlicher Änderung der Redox-Bedingungen in Folge von Sauerstoffmangel. Es ist zu erwarten, dass solche pulsartigen NSF-Ereignisse im Zuge des Klimawandels häufiger auftreten werden, da die Schichtung von Gewässern unter höheren Temperaturen länger anhalten und damit das Risiko für das Auftreten von Sauerstoffmangel ansteigen wird. Die Auswirkungen von NSF auf das Phytoplankton sind sehr wahrscheinlich erheblich, weil sein Wachstum in den Sommermonaten oft durch Nährstoffmangel (N, P, Fe) begrenzt ist. Das Ziel des vorliegenden Projekts ist es, Kurzeiteffekte auf das Phytoplankton (Artenzusammensetzung und physiologische Reaktionen, inklusive Art-spezifischer Reaktionen) unter in-situ-Bedingungen zu analysieren und daraus allgemeingültige Konzepte bezüglich der Trigger- und der Responsevariablen abzuleiten. Die Messungen werden in einem flachen Süß- und einem flachen Brackwassersystem mit einer Kombination aus neuartigen, hochauflösenden nasschemischen Sensoren (P), UV-Sensoren (C, N) und Methoden zur Charakterisierung der Phytoplanktonphysiologie (in-situ-Flow Cytometry, Gasaustauschmessungen und verschiedene Pulse-Amplitude-Modulated [PAM]-Fluorometer) durchgeführt. Im Mittelpunkt stehen die Verifizierung der Ursachen sowie die Quantifizierung der kinetischen Parameter (Dauer und Amplitude) von pulsartigen NSF in Kombination mit der quantitativen Erfassung der Auswirkungen auf Phytoplanktonentwicklung und -zusammensetzung. Parallel zu den Feldarbeiten sind Mesokosmos- und Laborexperimente vorgesehen, um unter kontrollierten Bedingungen die Kausalität der Freilandbeobachtungen zu überprüfen. Durch die Arbeiten des Projekts, vor allem die zeitlich hochaufgelösten Erfassungen von Freisetzungskinetik und Phytoplanktonreaktion, werden wegweisende Erkenntnisse erwartet, die insbesondere für Experten im Bereich Wasserqualitätsmanagement von fundamentalem Interesse sein werden. Es ist daher vorgesehen, die Ergebnisse auf frei zugänglichen Wissenschaftsdaten-Plattformen zur Verfügung zu stellen.

KI-gestützte Erfassung und Prognose der Biodiversität und Wasserqualität in Trinkwasser-Reservoiren, Biodiversitäts- und Wasserqualitätsprognose

KI-gestützte Erfassung und Prognose der Biodiversität und Wasserqualität in Trinkwasser-Reservoiren, Sensormethodik für Cyanobakteriendiversität

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Die Dynamik von Vitaminen und Spurenmetallen im Südpolarmeer: Bildungs- und Abbauprozesse von B-Vitaminen, Eisen, Zink und Kobalt mit Hilfe eines neuen Massenbilanz Verfahrens

Weite Regionen der Ozeane werden als sogenannte high nutrient low chlorophyll-Gebiete (HNLC) bezeichnet. Sie sind charakterisiert durch relativ niedrige Chlorophyllwerte trotz ausreichend hoher Nährstoffdichte. In diesen Regionen werden das Algenwachstum und dessen Zusammensetzung statt durch Makronährstoffe (etwa Nitrat), von Mikronährstoffen wie Spurenelementen und Vitaminen gesteuert. Die Eintragswege von Spurenelementen und deren Aufnahme durch Plankton und Schwebepartikel in der Wassersäule wurden in den letzten drei Jahrzehnten intensiv untersucht. Im Gegensatz dazu ist weiterhin relativ wenig bekannt über die Prozesse, welche das Vorkommen von bioverfügbaren Spurenelementen in situ wieder auffüllen, beispielsweise durch Remineralisation oder grazing durch Zooplankton. Die Bedeutung von Vitaminen für das Wachstum von Phytoplanktonblüten im Südpolarmeer wurde erst in jüngster Zeit erkannt. Jedoch existieren bislang keinerlei Daten über den Verbrauch und die Konzentrationen des Vitamingehaltes durch Plankton. Darüberhinaus sind Vitaminproduktionsraten für das marine System noch niemals bestimmt worden. In welchem Verhältnis stehen die Produktions- und Recyclingraten von Spurenstoffen und Vitaminen zu deren Entsorgungsraten? Welche Rolle spielt das grazing durch Zooplankton? Werden durch den Klimawandel und den als Folge saurer werdenden Ozean Recyclingprozesse begünstigt als Konsequenz einer veränderten Spurenstoffchemie und sich ändernder biologischer Wechselwirkungen? Um diese Fragen zu beantworten, wird ein neuer Ansatz zur Massenbilanzierung angewendet, um in situ Recyclingraten von drei ökologisch relevanten Spurenstoffen (Eisen, Zink und Kobalt) zu bestimmen. Außerdem werden die Produktions- und Recyclingrate von Vitaminen bestimmt. Eine umfassende Bestimmung der Planktongesellschaft mit unterschiedlichen Methoden wird die Schlüsselarten fuer die verschiedenen Prozesse identifizieren. Der Einfluss des grazing von Piko-und Nanoplankton durch höhere trophische Level auf diese Produktions- und Recyclingraten wird im Rahmen von Feld- und Laborexperimenten untersucht, ebenso wie der Einfluss von erhöhtem pCO2. Dieser umfassende Datensatz wird eine große Lücke in den Studien zur Bedeutung von Spurenstoffen und Vitaminen schließen. Er liefert zudem Informationen für globale Ozeanmodelle zum Kreislauf von Vitaminen, Eisen und weiteren ökologisch relevanten Spurenstoffen im marinen System und deren Veränderung unter sich wandelnden klimatischen Bedingungen.

Berlins Gewässer: klares Wasser, naturnahe Ufer

Fast sieben Prozent der Fläche Berlins sind Gewässer. Vor 18.000 Jahren hat das Schmelzwasser der letzten Eiszeit hier ein Urstromtal mit Talsandflächen geformt. Heute fließen Spree und Dahme in ihm und bilden flache Seenketten. Auf den Hochflächen von Teltow und Barnim entspringen kleinere Fließgewässer, die in dieses System münden. Dadurch finden sich auf engem Raum unterschiedlichste Gewässertypen. Sie sind Lebensraum unzähliger Tiere und Pflanzen, Trinkwasserreservoir und Erholungsorte in einem. All diese Anforderungen im Rahmen einer nachhaltigen Wasserwirtschaft auszutarieren, ist eine Herausforderung – gerade in Zeiten des Klimawandels. Die Berliner Strategie zur Biologischen Vielfalt verfolgt das Ziel, den ökologischen Zustand der Gewässer zu verbessern, die aquatischen Lebensräume zu vernetzen und ihre Habitat- und Artenvielfalt zu stärken. Die Belastung der Gewässer mit den Nährstoffen Stickstoff und Phosphat ist seit den 1990er-Jahren deutlich zurückgegangen. Eine bessere Abwasserbehandlung, weniger Einträge aus dem Brandenburger Einzugsgebiet, weniger Einleitungen der Industrie und zahllose Renaturierungsmaßnahmen haben besonders bei den Seen dazu geführt, dass Algenblüten selten geworden sind, die Sichttiefe gewachsen ist und sich mehr Wasserpflanzen angesiedelt haben. Der Klimawandel bringt jedoch neue Herausforderungen. Durch zunehmende Trockenheit gehen die Zuflüsse aus den Einzugsgebieten von Spree und Havel zurück. Der Wasserspiegel schwankt durch den Wechsel von Trockenheit und Starkregenereignisse, einige Abschnitte von Bächen trocknen zeitweise ganz aus. Vor allem in der Innenstadt kommt es zu hohen Wassertemperaturen und einer stärkeren Anreicherung mit Nährstoffen. Die Folge ist Sauerstoffmangel. Historisch mit der Stadtanlage gewachsen befindet sich in der Innenstadt eine Mischkanalisation, die Abwasser und Regenwasser zusammen abführt. Bei Starkregen kann deshalb Mischwasser in die Flüsse gelangen. Speicherräume für solche Mischwasserüberläufe zu schaffen und bei allen städtebaulichen Planungen das Regenwasser von der Kanalisation abzukoppeln, sind deshalb die wichtigsten Aufgaben. Die Berliner Regenwasseragentur berät Investierende, Eigentümer und Eigentümerinnen, wie sich Regenwasser direkt auf ihrem Grundstück bewirtschaften lässt. Wasser in die Landschaft! Lag der Anteil röhrichtbestandener Ufer vor rund 70 Jahren noch bei knapp 50 Prozent, waren es 1990 nur noch 21 Prozent. Das war der Tiefpunkt. Bis 2015 ist der Anteil dank des Berliner Röhrichtschutzprogramms wieder auf 30 Prozent gestiegen. Dafür wurden alte Röhrichtbestände mit Palisaden vor dem Wellenschlag des Schiffsverkehrs geschützt und neue angelegt. Dass das Wasser am Ufer deutlich ruhiger ist, kommt nicht nur Schilfrohr, Kalmus & Co zugute. Auch laichende Fische, Wasserinsekten und Wasserpflanzen profitieren. Röhrichte und Schutzbauwerke zu pflegen, ist deshalb ein essenzieller Teil des Programms. Ein regelmäßiges Monitoring per Fernerkundung liefert die Basis für bedarfsgenaue Maßnahmen zu ihrem Schutz. Röhrichtschutzprogramm Wo immer möglich, versucht man heute, harte Uferkanten zurückzubauen und wieder eine Abfolge an Lebensräumen vom offenen Wasser über strukturreiche Flachwasserzonen zu wechselfeuchten Ufern zu schaffen. So können Pflanzen, Fische und die wirbellose Tierwelt die Ufer wieder besiedeln. Zugleich sind die Ufer für Wirbeltiere leichter zugänglich. Und auch der Erosion bietet das Einhalt. Wie es die Wasserrahmenrichtlinie der EU vorsieht, erarbeitet Berlin Gewässerentwicklungskonzepte und Maßnahmenpläne für Tegeler Fließ, Panke, Erpe, Müggelspree/Müggelsee und Wuhle und setzt diese schrittweise um. Auch bei laufenden Arbeiten an Wasserstraßen werden abgebrochene oder senkrechte Uferbefestigungen durch bepflanzte Schrägufer oder Flachwasserzonen ersetzt. Solche Abschnitte finden sich zum Beispiel an der Havel in Alt-Gatow oder im Hasselwerder Park in Oberschöneweide an der Spree-Oder-Wasserstraße. Europäische Wasserrahmen­richtlinie Halten Sie Abstand zu Röhricht und Schwimmblattpflanzen, wenn Sie sich an heißen Tagen in Berlins Wasserlandschaft erfrischen! So tragen Sie zu ihrem Erhalt bei.

Winter-Diatomeenblüten und deren Einfluss auf Seenökosysteme

Durch globalen Wandel verändern sich die Winterbedingungen in Seen rapide. Eine Einschätzung der Folgen ist zum jetzigen Zeitpunkt schwierig, weil sich Limnologen historisch auf die 'Vegetationsperiode' von Frühling bis Herbst konzentriert haben und daher wenig über die Winterökologie bekannt ist. Bis vor kurzem galt der Winter im Allgemeinen als ökologisch ruhend, da das Lichtangebot erst für das Phytoplanktonwachstum ausreichend ist, wenn die Schichtung im Frühjahr einsetzt. Entgegen dieser Annahme gibt es viele Seen, in denen Phytoplankton - insbesondere großzellige Diatomeen - im Spätwinter vor der Schichtung dichte Blüten bilden können. Dieses Phänomen ist in gemäßigten Seen nicht ungewöhnlich, bisher jedoch unterforscht. Es gibt Hinweise darauf, dass diese Blüten einen starken Einfluss auf die Seeökosysteme in den folgenden Jahreszeiten haben, weil sie Nährstoffe binden und die Phytoplanktonbiomasse verringern. Ein besseres Verständnis dieser Zusammenhänge wird dringend benötigt, weil durch die klimabedingten Abnahme der Eisbedeckung und Veränderung der Durchmischungsverhältnisse die Häufigkeit solcher Blüten in gemäßigten Zonen vermutlich zunehmen wird. In diesem Projekt wollen wir die Ursachen und Folgen von Diatomeenblüten im Spätwinter bestimmen. Unsere wichtigste Hypothese ist, dass großzellige Diatomeenarten im Spätwinter hohe Biomassen entwickeln können, wenn 1) die Durchmischungsperiode ausreichend lang ist und 2) die Seentiefe und die Wassertransparenz genügend Licht in der gemischten Wassersäule zulassen. Diatomeenblüten transportieren durch Sedimentation ihrer Biomasse wiederum einen Großteil der verfügbaren Nährstoffe im Spätwinter ins Tiefenwasser und verändern dadurch die biogeochemischen und ökologischen Zusammenhänge des Sees im Frühjahr und Sommer. Unser Ansatz kombiniert folgende Elemente: 1) die Analyse von insgesamt über 100 Jahren hochwertiger Daten aus vier der am besten untersuchten deutschen (Stau)Seen, in denen sich hohe Biomassen von Diatomeen im Winter entwickeln, 2) Feldmessungen von Schlüsselprozessen im Winter und Frühling in einem der Seen, und 3) gekoppelte hydrodynamisch-ökologische Modellierung von drei der vier Seen. Die Zusammenhänge zwischen den Winterbedingungen, der saisonalen Phytoplankton-Biomasse und -Zusammensetzung sowie der Nährstoffverfügbarkeit werden in dem Projekt aufgedeckt und das Vorhandensein von Rückkopplungen festgestellt, die Diatomeen im Spätwinter fördern und zu alternativen stabilen Zuständen führen können. Wir werden das Phytoplankton-Inokulum, die internen Zellquoten von Nährstoffen und den vertikalen Transport von Kohlenstoff und Nährstoffen im Winter quantifizieren. Schließlich werden die gewonnenen Erkenntnisse in mathematische Beschreibungen einfließen. Das erwartete Ergebnis des Projektes ist ein umfassendes Prozessverständnis und Vorhersagemodell für das Auftreten von Diatomeenblüten im Spätwinter und deren Folgen für die Wasserqualität im Sommer.

DAM Schutz und Nutzen: Konzepte zur Reduzierung der Auswirkungen anthropogener Drücke und Nutzungen auf marine Ökosysteme und die Artenvielfalt, Vorhaben: Aufbau eines Mikrobiom-Bioarchives der Ostsee zur metaproteomischen Erfassung anthropogener Umweltveränderungen

Ermittlung des Potenzials schädlicher Phytoplankton-Massenentwicklungen in Bundeswasserstraßen

Veranlassung Die aktuellen, trockenen Jahre haben gezeigt, dass an den Bundeswasserstraßen im Binnenland und den Ästuaren in Zeiten des Klimawandels wieder vermehrt mit Eutrophierungs-Phänomenen zu rechnen ist. Das Fischsterben in der Oder, ausgelöst durch das verstärkte Wachstum der Alge Prymnesium parvum und der von ihr gebildeten Toxine, die mittlerweile regelmäßig auftretenden Cyanobakterienblüten an der Mosel oder auch die wieder verstärkt auftretende Sauerstoffproblematik in vielen Fließgewässern wie z. B. der Elbe sind die prominentesten Beispiele dieser Entwicklung (Abb. 1). Nicht nur in den Medien, der Öffentlichkeit und in der nationalen und internationalen Politik, auch bei den verwaltenden Behörden wie den Landesämtern oder der Wasserstraßen und Schifffahrtsverwaltung des Bundes erregt dieses Thema große Aufmerksamkeit und Besorgnis. Eutrophierung ist eines der zentralen Wasserqualitätsprobleme, die in der Nationalen Wasserstrategie der Bundesregierung benannt werden. Ihre Vermeidung, insbesondere im Ästuar- und Küstenbereich, ist „Vision“ der Nationalen Wasserstrategie und entspricht dem nationalen Umweltziel 1 aus der Umsetzung der Europäischen Meeresstrategie-Rahmenrichtlinie. Die Gründe für diese Eutrophierungsphänomene liegen in den ungewöhnlich langen, trockenen und warmen Wetterperioden in den Frühjahrs- und Sommermonaten der vergangenen Jahre. Diese führen nicht nur zu einem Anstieg der Wassertemperatur und ausreichender Lichtverfügbarkeit, auch der Abfluss in den Bundeswasserstraßen nimmt ab, während die Aufenthaltszeit des Wassers gerade in staugeregelten Bereichen ansteigt. All diese Faktoren sind wachstumsfördernd für Algen und Cyanobakterien. Durch den geringen Abfluss werden zudem eingeleitete Substanzen nicht mehr ausreichend verdünnt. Im Falle der Oder führten durch den Bergbau eingeleitete Salze erst dazu, dass die Brackwasseralge Prymnesium parvum ein ideales Habitat vorfand. Es besteht daher starker Bedarf, solche Kipppunkte von Gewässern frühzeitig zu erkennen und über ein Monitoringprogramm im Krisenfall die Handlungsfähigkeit der zuständigen Behörden zu verbessern. Dazu ist es zunächst notwendig, das Potenzial der Bundeswasserstraßen für die Massenentwicklung von schädlichen Algen und Cyanobakterien zu evaluieren und damit zu klären, an welchen Bundeswasserstraßen das Risiko für schädliche Algenblüten besteht. Es gibt verschiedene Algen, andere Protisten und Cyanobakterien, die das Potenzial schädlicher Auswirkungen auf das Ökosystem und die menschliche Gesundheit haben. Die Nischen oder Habitate, in denen diese Arten vorkommen sind zwar begrenzt, es ist jedoch nachgewiesen, dass durch den Menschen verursachte Phänomene (Klimawandel, Einleitung von Nährstoffen und Salzen) die Ausbreitung schädlicher Algen befördern und es dadurch zu massenhaften Entwicklungen dieser kommt. Es ist nicht bekannt, in welchen der Bundeswasserstraßen mögliche Habitate für diese schädlichen Organismen derzeit bestehen oder auch in Zukunft unter einem Klimawandelszenario entstehen könnten. Diese Lücke soll in diesem Projekt geschlossen werden. Ziele - Identifizierung der TOP10 HABs (engl. „Harmful Algae Blooms“ = schädliche Algenblüten), also der 10 Arten, die am wahrscheinlichsten in großen Fließgewässern eine schädliche Algenblüte bilden und Charakterisierung ihrer Umweltanforderungen - Erstellung und Veröffentlichung von Steckbriefen der TOP10 HABs - Zusammenstellung von Umweltdaten für eine Risikoanalyse schädlicher Phytoplankton-Massenentwicklungen - Analyse des trophischen Potenzials der Bundeswasserstraßen, d. h. der theoretischen Möglichkeit für eine Phytoplankton-Massenentwicklung in den Bundeswasserstraßen.

1 2 3 4 5173 174 175