Das Projekt "Teilprojekt 'Herstellung von C2+-Alkoholen auf Basis von H2, CO und CO2 aus Kuppelgasen'" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie durchgeführt. Die bei der Herstellung von Stahl anfallenden sogenannten 'Kuppelgase' sind reich an Wasserstoff (H2), Kohlenmonoxid (CO) und Kohlendioxid (CO2) und stellen eine alternative Kohlenstoff-Quelle für die Herstellung chemischer Wertprodukte dar. Sie bilden eine potentielle Quelle für Synthesegas und können damit einen wesentlichen Beitrag zur Reduktion der Emission von Klimagasen eines Stahlwerkes beitragen. Im Rahmen dieses Vorhaben sollen diese Kuppelgase zu C2+-Alkoholen umgewandelt werden. Diese können sowohl direkt als Treibstoff wie auch als Ausgangspunkt für andere Chemiebausteine genutzt werden. Durch die Synergie zwischen Stahlindustrie und chemischer Industrie kann somit durch Fixierung von Kohlenstoff in den verwertbaren Produkten der spezifische CO2-Ausstoß des Stahlwerkes reduziert werden. Der zentrale Punkt des Vorhabens ist die Entwicklung eines maßgeschneiderten homogenen Katalysators zur Verarbeitung von CO/CO2/H2 aus Kuppelgasen zu kurzkettigen C2+-Alkoholen. Die homogen katalysierte Umsetzung erfolgt in der Flüssigphase und schließt folgende Aspekte ein: a) Modifikation von CO2-Hydrierkatalysatoren zur direkten Umsetzung von CO/CO2/H2 zu C2+ Alkoholen b) Parallele Entwicklung eines molekularen Katalysatorsystems, welches in der Flüssigphase die Carbonylierung von Methanol mit der Hydrierung der entstehenden Carbonsäuren kombiniert und damit die direkte Homologisierung ermöglicht. c) Zudem sollen im Rahmen des Projektes unterschiedliche reaktionstechnische Konzepte (loop Reaktor, Mehrphasenkatalyse, Katalysatorimmobilisierung) für die Durchführung der Flüssigphasenreaktionen evaluiert und für den aussichtsreichten Fall demonstriert werden.
Das Projekt "Teilprojekt Uni Frankfurt" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften durchgeführt. In dem Verbundvorhaben BioC4 aus privaten und öffentlichen Europäischen Partnern soll ein industrieller Prozess zur fermentativen Herstellung von Bio-Isobutanol aus Miscanthus-Energiepflanzen sowie pflanzlichen Reststoffen entwickelt werden. Isobutanol ist eine vielversprechende Basischemikalie mit hohem Marktpotential, die zu anderen wertvollen Chemikalien umgewandelt oder als hochwertiger Biokraftstoff eingesetzt werden kann. Seine Herstellung mit Hilfe von rekombinanten Hefen als robusten Mikroorganismen ist ansatzweise gelungen, die bisher erreichten Produktionsraten und Ausbeuten genügen allerdings nicht den Anforderungen einer ökonomisch vertretbaren industriellen Herstellung. In diesem Teilprojekt sollen daher die Limitierungen der Isobutanol-Synthese in Hefen analysiert und Optimierungsmöglichkeiten entwickelt werden. Isobutanol kann in Hefen durch eine Kombination aus Valin-Biosynthese und -Abbau synthetisiert werden. Hefen vergären Zucker normalerweise über das Stoffwechselintermediat Pyruvat hauptsächlich zu Ethanol. Pyruvat ist aber auch das Ausgangssubstrat der Isobutanol-Synthese. Zur Steigerung der Isobutanol-Produktion wird daher zunächst durch genetische Modifikationen die Umwandlung von Pyruvat zu Ethanol blockiert. Danach soll die Einspeisung von Pyruvat in den Isobutanol-Weg verbessert und die Synthese anderer Nebenprodukte blockiert werden. Die einzelnen Enzyme des Isobutanol-Weges werden biochemisch charakterisiert und mittels genetischer Methoden optimiert. Ebenso wird die Redoxcofaktor-Balance angepasst. Letztendlich erfolgt eine Feinabstimmung des gesamten Biosynthese-Wegs zur weiteren Steigerung der Isobutanol-Produktionsraten und -Ausbeuten. Weiterhin werden Möglichkeiten zur Steigerung der Isobutanol-Toleranz untersucht. Aus den gewonnenen Erkenntnissen wird letztlich ein industrieller Hefestamm entwickelt, der sowohl die Hexosen als auch Xylose in lignocellulosischen Hydrolysaten optimal zu Isobutanol vergären kann.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität München, Campus Straubing für Biotechnologie und Nachhaltigkeit, Lehrstuhl für Chemie Biogener Rohstoffe durchgeführt. TEMPEST ist eine Plattformtechnologie für die in-vivo Modifikation von Alkoholen und organischen Säuren, welche in der modifizierten Form eine einfache in-situ Abtrennung und Aufreinigung dieser bio-basierten Zielprodukte in fermentativen Prozessen erlaubt. Somit adressiert TEMPEST eine zentrale Herausforderung von mikrobiellen Bioraffinerieprozessen: Die Produktaufreinigung von sehr gut wasserlöslichen Zielverbindungen aus der Fermentationsbrühe, die bis heute einer der größten Kostenfaktoren von bio-basiert hergestellten Produkten ist. Zusätzlich bietet die in-vivo Modifikation einen direkten Zugriff auf sekundäre Produkte wie Polymere oder Olefine, womit TEMPEST die Basis für eine breitere Anwendung in der Bioökonomie finden soll. Basierend auf Ansätzen der Synthetischen Biology werden Enzyme und Produktionsstämme zur Herstellung der modifizierten Alkohole und Säuren entwickelt. Während der beantragten Förderperiode soll der Beweis für die Funktionalität dieser Technologieplattform erbracht werden, indem ein Produktionsstamm erzeugt wird, welcher modifizierte Alkohole bzw. organische Säuren herstellt, der Herstellungsprozess und die Aufreinigung optimiert und ein Up-Scale-Konzept für einen Fermentations-Maßstab von 1.000 L erarbeitet wird.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik, Institutsteil Straubing, Bio-, Elektro- und Chemokatalyse durchgeführt. TEMPEST ist eine Plattformtechnologie für die in-vivo Modifikation von Alkoholen und organischen Säuren, welche in der modifizierten Form eine einfache in-situ Abtrennung und Aufreinigung dieser bio-basierten Zielprodukte in fermentativen Prozessen erlaubt. Somit adressiert TEMPEST eine zentrale Herausforderung von mikrobiellen Bioraffinerieprozessen: Die Produktaufreinigung von sehr gut wasserlöslichen Zielverbindungen aus der Fermentationsbrühe, die bis heute einer der größten Kostenfaktoren von bio-basiert hergestellten Produkten ist. Zusätzlich bietet die in-vivo Modifikation einen direkten Zugriff auf sekundäre Produkte wie Polymere oder Olefine, womit TEMPEST die Basis für eine breitere Anwendung in der Bioökonomie finden soll. Basierend auf Ansätzen der Synthetischen Biology werden Enzyme und Produktionsstämme zur Herstellung der modifizierten Alkohole und Säuren entwickelt. Während der beantragten Förderperiode soll der Beweis für die Funktionalität dieser Technologieplattform erbracht werden, indem ein Produktionsstamm erzeugt wird, welcher modifizierte Alkohole bzw. organische Säuren herstellt, der Herstellungsprozess und die Aufreinigung optimiert und ein Up-Scale-Konzept für einen Fermentations-Maßstab von 1.000 L erarbeitet wird.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Biologie II, Bereich Mikrobiologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering').Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Biochemie und Technische Biochemie (IBTB), Abteilung Technische Biochemie durchgeführt. Ziel des Projekts HYtec ist die Entwicklung und das enzymatische Engineering von Biokatalysatoren zur cofaktorfreien Addition von H2O an nicht-aktivierte Alkene für die Biosynthese marktrelevanter Duft- und Riechstoffe sowie Pharma- und Pflanzenschutzmolekülen. Die Synthese beruht auf der Verwendung von Enzymen aus der Familie der Hydratasen. Hydratasen vermögen die Umsetzung von Alkenen zum korrespondierenden chiralen Alkohol zu katalysieren. In Vorarbeiten konnte festgestellt werden, dass die Oleat-Hydratase aus Elizabethkingia meningoseptica (Em-OHA) ein vielversprechendes evolvierbares Ausgangsenzym zur selektiven Hydratisierung von kurzkettigen freien Fettsäuren und Alkenen darstellt. Eine Mutagenese der Oleat-Hydratase wird im Weiteren die Hydratisierung von Alkenen mit verzweigten Motiven ermöglichen und so die Substratplattform erweitern. Das hier vorgestellte Vorhaben ermöglicht so die effektive Herstellung von Duft- und Riechstoffen, Pharma- und Pflanzenschutzmolekülen, Pheromonen und Terpenoiden durch eine deutliche Reduktion von Synthesestufen basierend auf nachwachsenden Rohstoffen. Die im Labor entwickelte und optimierte Hydratase Technologie wird schlussendlich durch den Partner Bell Flavors & Fragrances GmbH hinsichtlich ökologischer, ökonomischer und technischer Gesichtspunkte evaluiert und angewandt.
Das Projekt "Teilvorhaben D" wird vom Umweltbundesamt gefördert und von InfraServ GmbH & Co. Knapsack KG durchgeführt. 1. Vorhabenziel Konstrukt des Konsortiums: 3 Partner, die jeweils einen sep. Antrag stellen. Innerhalb des Vorhabens Bio-M soll ein neues flexibles und nachhaltiges Verfahren zur Erzeugung von MeOH aus biogenem CO2 und grünem H2 entwickelt und dessen technische Machbarkeit sowie industrielle Relevanz aufgezeigt werden. Vorteile liegen in den Vermarktungsmöglichkeiten des MeOHs als biogene Plattformchemikalie und in der Erhöhung der Energiedichte gegenüber H2. Fokus des Projekts ist die Entwicklung und Evaluierung optimierter Katalysatoren, welche den Anforderungen der Realgaszusammensetzungen sowie einer flukturierenden Betriebsweise entsprechen. 2. Arbeitsplanung Das Projekt besteht aus der 7 AP, die von allen Partnern bearbeitet werden und jeweils von einem Partner geleitet werden. Jedes Teilvorhaben wird nur dann durchgeführt, wenn alle Teilvorhaben bewilligt werden und ein Konsortialvertrag vorliegt. Nach der Ermittlung der Grundlagen (AP1) wird eine technische Vorauslegung (AP2) angestrebt. Aufbauend auf dieser Vorauslegung wird eine Simulation (AP3) durchgeführt. Das Ergebnis wird in Form eines Labortests (AP4) technisch untersucht. Die Resultate der Realtestumgebung werden in der Validierung (AP5) fachlich analysiert. Im Anschluss können in der Skalierung (AP6) wichtige Aussagen für eine spätere industrielle Anwendung getroffen werden. Das Projekt gliedert sich in 2 Iterationen, wodurch Verbesserungspotentiale der 1. Iteration direkt analysiert und die abschließende Skalierung einfließen kann.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Bioinformatik und Systembiologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering'). Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.
Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Technische Universität München, Campus Straubing für Biotechnologie und Nachhaltigkeit, Lehrstuhl für Chemie Biogener Rohstoffe durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes technisches Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering'). Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Duisburg-Essen, Biofilm Centre, Molekulare Enzymtechnologie durchgeführt. Die Verarmung fossiler Ressourcen und die Emission von Treibhaus-Gasen erfordern neue Strategien zur Nutzung von alternativen, nachhaltigen Ressourcen wie z.B. Lignocellulose. Derzeitig genutzte Verfahren benötigen jedoch aufgrund der stabilen und widerspenstigen Beschaffenheit von Lignocellulose weitere Optimierung. Archaeen wurden als dritte Domäne des Lebens vor ca. 40 Jahren etabliert. Sie dominieren extreme Habitate und gewinnen aufgrund ihrer Robustheit, ihrer einzigartigen Stoffwechseleigenschaften und stabilen Enzyme 'Extremozyme' ein wachsendes Interesse. Jedoch sind Archaeen in Bezug auf biotechnologische Anwendungen weitgehend ungenutzt. Wir haben Sulfolobus acidocaldarius (Wachstum bei 75-80°C und pH 2-3) als unseren 'in vivo' Plattform-Organismus ausgewählt, da seine Wachstumsbedingungen denen zur Vorbehandlung von Lignocellulose (verdünnte Säure und Hitze) entsprechen. Für S. acidocaldarius sind genetische Werkzeuge und Methoden etabliert, die es ermöglichen neue Stoffwechseleigenschaften in den Organismus einzubringen ('metabolic engineering').Das Ziel des Projektes ist es S. acidocaldarius als Chassis für die Produktion von Chemikalien aus Lignocellulose und als thermoacidophilen Biodetektor zu entwickeln. Dabei soll exemplarisch die Produktion von Bioalkoholen/Biotreibstoffen (hier Ethanol und Isobutanol) mit S. acidocaldarius entwickelt sowie an der Optimierung thermophiler Enzymkaskaden (in vitro 'metabolic engineering') gearbeitet werden. Der Einsatz von hitzestabilen Biokatalysatoren und die Durchführung von Reaktionen bei höheren Temperaturen bieten zahlreiche Vorteile wie z.B. erhöhte Löslichkeit, Vermeidung von Kontaminationsproblemen und vereinfachte Weiterverarbeitung für die Produktgewinnung (z.B. für flüchtige Produkte). Der Einsatz von S. acidocaldarius eröffnet somit neue Horizonte für alternative Prozesstechnologien (neue 'Ein-Topf' Strategien) mit Vorteilen bei der Rohstoffvorbehandlung, Prozessdurchführung und Produktgewinnung.
Origin | Count |
---|---|
Bund | 86 |
Type | Count |
---|---|
Förderprogramm | 86 |
License | Count |
---|---|
offen | 86 |
Language | Count |
---|---|
Deutsch | 86 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 42 |
Webseite | 44 |
Topic | Count |
---|---|
Boden | 76 |
Lebewesen & Lebensräume | 84 |
Luft | 42 |
Mensch & Umwelt | 86 |
Wasser | 35 |
Weitere | 86 |