s/alpine-region/Alpine Region/gi
Dargestellt werden die im Abbau befindlichen Bereich je Jahrzehnt. Die Erfassung erfolgt auf Basis von Luftbildern und wurde noch nicht für alle Abgrabungen durchgeführt.
Blatt Konstanz zeigt das subalpine Molassebecken mit dem Bodensee im zentralen Teil. Die Molassesedimente werden im Nordwesten vom Jura der Schwäbischen Alb und im Südosten von alpinen Einheiten begrenzt. Neben Helvetikum- und Flyschzone sind im äußersten Südosten Teile der Nördlichen Kalkalpen erfasst (Lechtal- und Allgäu-Decke). Das Alpenvorland mit ungefalteter und gefalteter Molasse nimmt die größte Fläche im Kartenausschnitt ein. Der Schutttrog der Alpen ist mit tertiären Sedimenten verfüllt. Im Bereich der ungefalteten Vorlandmolasse wird die tertiäre Beckenfüllung (Süßwasser-, Brackwasser- und Meeresmolasse) weitflächig von pleistozänen Deckschichten (Ablagerungen der Mindel-, Riss- und Würm-Kaltzeit) überlagert. Während die tertiären Molasseschichten im Nordwesten allmählich auskeilen, wurden sie im Südosten bei der Deformation mit aufgebogen (Faltenmolasse). In den Ausläufern der Schwäbischen Alb, in der Nordwest-Ecke der Karte, sind Kalk- und Mergelsteine des Juras aufgeschlossen. Im Übergangsbereich zum Molassebecken sind zudem die tertiären Vulkanite des Hegaus (Phonolithe, Olivinnephelinite, Deckentuffe) erfasst. Die alpinen Einheiten nehmen nur einen sehr kleinen Teil im Südosten des Kartenblattes ein. Helvetische Zone und Flysch-Zone sind relativ breit ausgebildet. Im Helvetikum, bestehend aus Kalk- und Mergelsteinen des Juras und der Kreide, lassen sich mehrere Schuppen- und Deckeneinheiten unterscheiden: Helvetische Randzone, Flammenegg-Zug, Hohenemser Falte, Säntis-Decke, Liebensteiner Decke sowie Schuppenzone von Wildhaus-Brülisau. In der Flysch-Zone lagern kreidezeitliche Tiefenwassersedimente in typischer Wechsellagerung tonig-mergeliger bzw. sandig-kalkiger Fazies. Im äußersten Südosten sind Lechtal- und Allgäudecke des Kalkalpins (Kalk- und Dolomitgesteine der Trias und des Juras) angeschnitten. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil zusätzliche Einblicke in den Aufbau des Untergrundes. Der Nordwest-Südost-Schnitt kreuzt das Alpenvorland mit ungefalteter und gefalteter Molasse, die Helvetikum- und Flysch-Zone des Alpenrandes und endet in den Nördlichen Kalkalpen (Lechtal- und Allgäu-Decke).
Dargestellt werden alle bekannten Flächen im Kreis Wesel, auf denen Abbau von Kies, Sand oder Ton vorgenommen wurde. IdR hat eine Schlussabnahme stattgefunden.
Blatt Augsburg wird von den Molassesedimenten des Alpenvorlandes dominiert. Im Nordteil des Kartenausschnitts ist ihre Begrenzung zum Jura der Schwäbischen Alb und zum Nördlinger Ries erfasst. Der Flusslauf der Donau stellt eine deutliche Grenzlinie zwischen diesen Gebieten dar. Die größte Fläche im Kartenausschnitt nimmt das Molassebecken des Alpenvorlandes ein. Der Schutttrog der Alpen ist mit tertiären Ablagerungen verfüllt. Die an der Oberfläche lagernden miozänen Lockersedimente der Vorlandmolasse werden großflächig von quartären Deckschichten überlagert, z. B. Schotterebenen der Schmelzwasserflüsse, Löss oder holozänen Moor- und Auesedimenten. Die durch Karbonat betonartig verkitteten Flusskonglomerate der glazialen Schotterterrassen werden als Nagelfluh bezeichnet und sind charakteristische Bildungen im Molassebecken. In der Schwäbischen Alb am Nordrand der Karte sind Kalk-, Mergel- und Dolomitsteine des oberen Juras aufgeschlossen. Umlagerungsbildungen wie Alblehm sind in den Niederungen und Senken weit verbreitet. Der Bereich des Nördlinger Ries ist von Trümmermassen und Impaktbrekzien aus kristallinen Gesteinen des Grundgebirges markiert. Das Ries wird als Krater eines Meteoriten interpretiert, der im oberen Miozän aufprallte. Die Jura-Sedimente in seiner randlichen Umgebung sind stark zerquetscht und deformiert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil zusätzliche Einblicke in den Aufbau des Untergrundes. Die Profillinie quert das Kartenblatt von Nord nach Süd und kreuzt dabei das Nördlinger Ries, das Donauried sowie die Vorlandmolasse der Alpen.
Ethnologisch orientierte Forschungsaktivitaeten ueber lokales Wissen und Handlungsstrategien. Umwelt- und Landschaftsbewertung aus wissenschaftlicher und nichtwissenschaftlicher Sicht, sowie das endogene Entwicklungspotential von 'Indigenous Knowledge' sind die Leitthemen. Dabei bieten sich als regionale Schwerpunkte - im Sinne einer vergleichenden Hochgebirgsforschung - die Alpen und der Himalaja an. Geplant sind die Projekte 'Nationalparke in Nepal: Traditionelle Nutzung und Bewertung im Konflikt mit dem Naturschutz' und 'Nepal Conservation Area Mapping Project' (in Zusammenarbeit mit der TU Graz) weiterzufuehren. Als sozialgeographisch ausgerichteter, weiterer Forschungsschwerpunkt kristalliert sich das Thema 'Marginale Gruppen' heraus. Geplant ist ein Projekt ueber die sogenannten 'Tribal Groups' und 'Out-Casts' in Suedasien und deren Entwicklungspotential. Im Fokus sollen gleichzeitig auch Migrantinnengruppen in der Schweiz stehen.
Das Eis der höchsten Alpengipfel enthält bislang nicht untersuchte, aber überaus wertvolle Klimainformationen. Die interne Altersstruktur der Gipfelgletscher resultiert aus der Reaktion auf Klimabedingungen, die sie Masse gewinnen, verlieren oder stagnieren lassen. Dieses Klimaarchiv ist noch unerforscht, aber akut bedroht von der gegenwärtigen Erwärmung und Extremereignissen. Zum Beispiel ist unzureichend verstanden wie Klimafluktuationen der letzten 1000 Jahre, speziell die so genannte "kleine Eiszeit", die Gipfelgletscher beeinflusst haben. Um diese Frage zu beantworten braucht es Altersinformation über die Gletscherschichtung. Da Abzählen von Jahresschichten nicht möglich ist, muss die Datierung über radiometrische Verfahren erfolgen. Im Altersbereich zwischen 100 und 1000 Jahre vor heute hat nur das Radioisotop des Edelgases Argon, 39Ar, eine passende Halbwertszeit von 269 Jahren, um als Datierungswerkzeug eingesetzt werden zu können. Allerdings ist das Vorkommen von 39Ar in der Natur so gering, dass 1 kg modernes Eis nur etwa 10.000 Atome an 39Ar beinhaltet. Technische Durchbrüche in der Messung von 39Ar in einer Atomfalle (ArTTA) haben es ermöglicht, die benötigte Probenmenge von Tonnen auf ein paar Kilogramm zu reduzieren. Erst dadurch wird die Anwendung zur Gletschereisdatierung durchführbar. Dieses Projekt wird die Methode der ArTTA Datierung für Gletschereis entwickeln, validieren und zur Entschlüsselung neuartiger Klimaarchive anwenden. Bereits bestehende Forschung an der ÖAW und der Uni Heidelberg bieten eine einzigartige Möglichkeit, dieses Vorhaben umzusetzen. Eine in Zusammenarbeit durchgeführte Pilotstudie hat bereits die Machbarkeit des Vorhabens belegt. Daran anschließend soll nun systematisch das Potential der Methode beurteilt werden. Zur Validierung werden Gletscher mit bereits bekannter Altersinformation und zusätzliche radiometrische Datierungen (z.B. über 14C) eingesetzt. Das 39Ar-Datierungsverfahren wird exemplarisch angewendet, um die Klimainformation in der Altersstruktur eines Gipfelgletschers zu rekonstruieren. Die Kenntnis der heutigen Energie- und Massenbilanz ermöglicht die Zuordnung von Akkumulationsänderungen der Vergangenheit zu den ursächlichen Klimaänderungen. Ihre Infrastruktur und hohe Informationsdichte machen die Alpen ein ideales Forschungsfeld für dieses Vorhaben. Schlussendlich wird das 39Ar-Datierungsverfahren für die Paläoklimaforschung erschlossen, mit einem möglicherweise ähnlichen Innovationsschub wie die Anwendung von 14C zur Eisdatierung. Den Einfluss vergangener Klimaschwankungen auf Gipfelgletscher besser zu verstehen wird auch ihre Zukunft besser vorhersagbar machen, mit direkter Relevanz zur Adaption an die sich ändernden Klimabedingungen, aber auch als Beitrag zum Verständnis kleinräumiger Klimaschwankungen und zur Bewusstseinsbildung im Hinblick auf den Klimawandel im Alpenraum.
The FPOS54 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FP): Public A1A2 (OS): Austria (Remarks from Volume-C: PUBLIC FORECAST/WESTERN ALPS)
Der Datensatz beinhaltet regionale Bio-Produzenten und Händler aus den Kreisen Kleve und Wesel. Der Datensatz erhebt keinen Anspruch auf Vollständigkeit.
Dargestellt werden Abgrabungsbereiche im Kreis Wesel, für die eine Genehmigung vorliegt, der Abbau aber noch nicht begonnen hat. Dargestellt werden die Bruttoflächen.
Globale Erwärmung und veränderte Landnutzung haben in neuerer Zeit bereits zu merklichen Änderungen der alpinen Vegetation geführt. Dem Überdauerungsvermögen alpiner Arten am Wuchsort und ihrer Fähigkeit zur Ausbreitung kommt mit zunehmender Dynamik von Umweltveränderungen eine besondere Bedeutung zu. Notwendige Grundlage von Prognosen zu Vegetationsveränderungen, aber auch von evolutionsbiologischen Modellen, ist die Kenntnis ausbreitungs- und überdauerungsrelevanter Samenmerkmale, die ich für den größten Teil der alpinen und subalpinen Pflanzenarten während meines Aufenthaltes in Basel erstellen konnte. Der Datensatz enthält Angaben über Gewicht, Form, Ausbreitungstyp u.a. Eigenschaften von ca. 540 Arten der Alpen, die z.T. aus eigenen Aufsammlungen, v.a. aber aus dem umfangreichen Samenherbar des Botanischen Institutes stammen. Zusätzlich wurde die Variabilität des Diasporengewichtes (DG) für einige Arten auf der Populationsebene, und in Abhängigkeit von der Meereshöhe gemessen. Eine zentrale Frage war, welche Eigenschaften der adulten Pflanze (Wuchshöhe, Lebensform, Lichtzahl, Feuchtezahl u.a.) mit dem DG korreliert sind, und ob sich das DG alpiner Arten signifikant von dem der Arten tieferer Regionen unterscheiden. Ein phylogenetisch balancierter Vergleichs-Datensatz, der die DG s und Eigenschaften von Arten tieferer Regionen umfasst, steht kurz vor der Vollendung. Erste vergleichende Analysen innerhalb zweier artenreicher Pflanzenfamilien zeigten ein signifikant höheres Diasporengewicht der alpinen Arten. Eine signifikante Veränderung des DG s mit der Höhe konnte anhand der Untersuchung von ca. 50 Populationen von Carex flacca nicht gefunden werden. Keimungsökologische Studien zu zwei alpinen Carex-Arten wurden abgeschlossen und ausgewertet. Beide Arten haben die Fähigkeit, eine Diasporenbank im Boden aufzubauen, und besitzen Dormanzeigenschaften, die den Keimungszeitpunkt auf eine kurze Periode nach der Schneeschmelze eingrenzen.
| Origin | Count |
|---|---|
| Bund | 1921 |
| Europa | 1 |
| Kommune | 35 |
| Land | 213 |
| Wissenschaft | 610 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Bildmaterial | 5 |
| Daten und Messstellen | 108 |
| Ereignis | 18 |
| Förderprogramm | 1284 |
| Hochwertiger Datensatz | 2 |
| Sammlung | 1 |
| Software | 3 |
| Taxon | 425 |
| Text | 169 |
| Umweltprüfung | 7 |
| unbekannt | 203 |
| License | Count |
|---|---|
| geschlossen | 693 |
| offen | 1471 |
| unbekannt | 59 |
| Language | Count |
|---|---|
| Deutsch | 1712 |
| Englisch | 1093 |
| andere | 3 |
| Resource type | Count |
|---|---|
| Archiv | 59 |
| Bild | 38 |
| Datei | 89 |
| Dokument | 584 |
| Keine | 1240 |
| Multimedia | 1 |
| Unbekannt | 5 |
| Webdienst | 38 |
| Webseite | 360 |
| Topic | Count |
|---|---|
| Boden | 2222 |
| Lebewesen und Lebensräume | 2223 |
| Luft | 1148 |
| Mensch und Umwelt | 1841 |
| Wasser | 1090 |
| Weitere | 1776 |