Fachleute aus Wirtschaft, Wissenschaft und Verwaltung diskutieren auf REACH-Kongress Bundesumweltministerium (BMUB) und Umweltbundesamt (UBA) ziehen nach acht Jahren REACH eine positive Bilanz: „Die EU-Chemikalienverordnung REACH ist ein wichtiger Fortschritt hin zu einem besseren und nachhaltigen Umgang mit Chemikalien – in Europa und global. Gleichzeitig zeigt die Praxis, dass die Verordnung alle Akteure täglich aufs Neue fordert“, sagte UBA-Präsidentin Maria Krautzberger anlässlich der Eröffnung des deutschen REACH-Kongresses in Dessau-Roßlau mit 200 Fachleuten aus Wirtschaft, Wissenschaft und Verwaltung. Ein wichtiger Schwerpunkt der Arbeit des UBA zu REACH ist, besonders besorgniserregende Substanzen zu identifizieren: „Das ist wissenschaftlich wie organisatorisch außerordentlich komplex. Manchen geht es hier zu langsam, und doch: Die Liste besonders besorgniserregender Substanzen umfasst inzwischen 155, ab Mitte Dezember vermutlich 161 Stoffe. 18 Vorschläge davon gehen auf Arbeiten des Umweltbundesamtes zurück“, sagte Krautzberger. Für die ersten der besonders besorgniserregenden Stoffe ist schon die Zulassungspflicht nach REACH wirksam, unter anderem für vier Phthalate, die wegen ihrer fruchtschädigenden Wirkung gelistet wurden. Zulassungspflicht bedeutet, dass die Verwendung des Stoffes nur noch erlaubt ist, soweit die betreffende Anwendung von der EU-Kommission nach einem Zulassungsverfahren, in das alle Mitgliedstaaten involviert sind, explizit zugelassen ist. Unternehmen, die zulassungspflichtige Stoffe weiter einsetzen möchten, müssen in einem Zulassungsantrag die sichere Verwendung nachweisen oder zeigen, dass die beantragte Verwendung für die Gesellschaft insgesamt von Vorteil ist. In jedem Fall werden für die Zulassungen Überprüfungsfristen festgelegt, denn langfristig sollen alle zulassungspflichtigen Substanzen ersetzt werden, entweder durch geeignete Alternativstoffe oder mittels Alternativtechnologien, sofern diese wirtschaftlich und technisch tragfähig sind. Gerade kleine und mittlere Unternehmen fordern beim Zulassungsverfahren mehr Unterstützung durch die Behörden. „Um den Unternehmen eine größere Planungssicherheit zu geben, werden zukünftig die deutschen Behörden frühzeitig über ihre regulatorische Arbeitsplanung informieren. Im Gegenzug erhalten sie dann von den Firmen praktische Informationen zum Einsatz der Chemikalien, die für die Wahl der angemessenen Regelungsinstrumente wichtig sind. Insgesamt soll das Zulassungsverfahren transparenter und die Zulassungschancen für die Antragsteller vorhersehbarer werden“, so Bundesum-weltministerin Barbara Hendricks. In einem Schreiben mehrerer Mitgliedstaaten an die neue Europäische Kommission mit der Forderung nach ambitionierter Fortentwicklung der Chemikalienpolitik, das auch Ministerin Hendricks unterzeichnete, wurde dieses Thema ebenfalls adressiert. Ein wichtiges Anliegen von REACH ist die Transparenz, etwa über besorgniserregende Stoffe, die auch in Alltagsprodukten wie Textilien, Spielzeugen oder Haushaltsgeräten stecken können. Auf der Grundlage der REACH-Verordnung können sich Verbraucher erkundigen, ob Produkte solche Chemikalien enthalten. Durch ein Webangebot hat das UBA das Verfahren für alle Akteure vereinfacht – unter http://www.reach-info.de kann man eine Anfrage online stellen. Benötigt werden nur der Produktcode und die Kontaktdaten der Anfragenden. Händler, Hersteller und Importeure müssen dann innerhalb von 45 Tagen kostenlos darüber informieren, welche Stoffe der Kandidatenliste in einem Erzeugnis enthalten sind – unabhängig von einem möglichen Kauf.
This report summarises the findings and results of the project “Implementation and enforcement of EU regulations on fluorinated greenhouse gases (F-gases) and ozone-depleting substances (ODS) in Bulgaria”. The project’s objective was to identify potential for improving the implementation and enforcement of different EU-regulations, e.g. of Regulation (EU) No. 517/2014, in Bulgaria. It focussed on the topics reporting, containment of ODS and F-gases, incentives for ODS destruction, supervision of the market (including internet trade), alternative technologies to F-gases, as well as training and certification contents and procedures addressing alternatives to F-gases. In addition to this final report, three guidance documents have been developed with more detailed information on the supervision of the market, on natural refrigerants, and on the training and certification topic. Veröffentlicht in Climate Change | 05/2017.
Die Mengen an teilfluorierten Kohlenwasserstoffen (HFKW) werden im Rahmen der EU-Verordnung über fluorierte Treibhausgase bis zum Jahr 2030 schrittweise auf 21% reduziert. Zur Einschätzung der Umsetzung in Deutschland wurde ein Realitätscheck des HFKW-Verbrauchs sowie Projektionen zur Marktdurchdringung mit Alternativtechnologien in der Kälte- Klima -Branche durchgeführt. Ziel war es, qualitativ und quantitativ einschätzen zu können, in welchen Sektoren aktuell und zukünftig der größte Handlungsbedarf besteht. Für viele Sektoren wird eine kontinuierliche Überschreitung der zur Verfügung stehenden HFKW-Mengen projiziert. Insgesamt können die Reduzierungsschritte nur zeitverzögert erfüllt werden. Veröffentlicht in Texte | 164/2020.
Hochradioaktive Strahlenquellen (HRQ) sind weltweit in zahlreichen Anwendungsbereichen im Einsatz und leisten in den Gebieten Medizin, Forschung und Industrie wichtige Beiträge. So werden beispielsweise in der Medizin HRQ zur Strahlentherapie oder zur Sterilisation von Blut und Blutprodukten eingesetzt. Im Bereich der Forschung sind HRQ u. a. bei der Untersuchung von Zellen, Kleintieren und Werkstoffen im Einsatz. In der Industrie werden HRQ insbesondere in den Bereichen zerstörungsfreie Werkstoffprüfung (Gammaradiographie) und Prozessüberwachung verwendet. Trotz der Vorteile durch die Nutzung müssen allerdings auch die Risiken dieser Techniken, insbesondere durch gestohlene oder herrenlose HRQ, betrachtet werden. Dies ergibt sich direkt aus dem Rechtfertigungsgebot des Strahlenschutzgesetzes (StrlSchG) [1]. Die Rechtfertigung von Tätigkeiten kann überprüft werden, sobald wesentliche neue Erkenntnisse über den Nutzen oder die Auswirkungen dieser Tätigkeit vorliegen; eine Überprüfung ist zudem dann sinnvoll, wenn wesentliche neue Informationen über alternative Verfahren und Techniken verfügbar sind (§ 6 Abs. 2 StrlSchG). Daher werden in dieser Studie alternative Technologien untersucht, die das Potential besitzen, bisherige Tätigkeiten mit HRQ ersetzen zu können. Doch auch bei gerechtfertigten Tätigkeiten mit HRQ ist die Untersuchung von alternativen Technologien mit geringerem radiologischen Risiko angebracht, um das Optimierungsgebot des StrlSchG zu berücksichtigen. So kann beispielsweise eine Technik, die bei gleichem Nutzen mit geringeren Aktivitätsmengen auskommt, eine sinnvolle Optimierung darstellen. Für Optimierungen im Bereich von HRQ-Tätigkeiten müssen immer die Umstände des Einzelfalls und der aktuelle Stand von Wissenschaft und Technik berücksichtigt werden. Diese Studie soll daher auch im Bereich der Minimierung des radiologischen Risikos zweckmäßige Alternativtechnologien betrachten. Vergleichbare Studien gibt es bereits auch für einige andere Länder; die dort gewonnenen Erkenntnisse werden – sofern sie auch für die Anwendungen in Deutschland relevant sind – in dieser Studie mitberücksichtigt.
Mit dem Inkrafttreten der neuen Deponieverordnung am 16. Juli 2009 haben sich die Anforderungen an Deponieabdichtungskomponenten gegenüber den früheren Vorgaben der Deponieverordnung und den Technischen Anleitungen TA Abfall und TA Siedlungsabfall deutlich verändert. Insbesondere wird seitdem auf die Vorgabe eines Regelaufbaus verzichtet, der früher ohne Nachweis der grundsätzlichen Eignung als genehmigungsfähig anzusehen war. Stattdessen werden nun alle Dichtungssysteme gleichbehandelt und werden an einheitlichen Anforderungen an die Leistungsfähigkeit und Beständigkeit gemessen. Gleichzeitig sind in den vergangenen Jahren mehrere alternative Technologien entwickelt worden, die zunehmend Eingang in den Deponiebau finden. Somit steht im Regelfall für den Bau einer Deponieabdichtung eine Palette möglicher technischer Lösungen zur Verfügung, aus der die technisch und ökonomisch günstigste Variante auszuwählen ist. Dieses Arbeitsblatt soll einen Überblick über die derzeit angebotenen bzw. verfügbaren Dichtungssysteme geben und damit die Entscheidungsfindung bei der Planungsarbeit erleichtern. Es richtet sich sowohl an Deponiebetreiber und Planungsbüros als auch an Genehmigungsbehörden. Das Arbeitsblatt fasst bestehende technische Anforderungen an Deponieabdichtungssysteme zusammen und ergänzt sie mit Empfehlungen zur Bemessung und Ausführung. Arbeitsblatt 49 | LANUV 2020 Arbeitsblatt 33 | LANUV 2017 Arbeitsblatt 6 | LANUV 2009 Fachbericht 140 | LANUV 2023 Fachbericht 35 | LANUV 2011 Fachbericht 25 | LANUV 2010 Fachbericht 24 | LANUV 2018
Emissionen fluorierter Treibhausgase („F-Gase“) Fluorierte Treibhausgase werden in der Regel gezielt hergestellt und als Arbeitsmittel in verschiedenen Anwendungen eingesetzt. Die Emissionen sind von 2003 bis 2016 kontinuierlich gestiegen, zeigen aber nun einen deutlichen Abwärtstrend. Grund dafür sind wirksame gesetzliche Regelungen, die die Verwendung der F-Gase limitieren. Der Artikel stellt die aktuellen Emissionen dieser Stoffgruppe vor. Entwicklung in Deutschland seit 1995 Zu den fluorierten Treibhausgasen (F-Gasen) zählen die vollfluorierten Kohlenwasserstoffe (FKW), die teilfluorierten Kohlenwasserstoffe (HFKW), Schwefelhexafluorid (SF 6 ) und Stickstofftrifluorid (NF 3 ). Hauptursache für die starke Zunahme war der vermehrte Einsatz von fluorierten Treibhausgasen als Kältemittel. Minderungen wurden hauptsächlich bei der Herstellung von Primäraluminium, Halbleitern, der auslaufenden Anwendung in Autoreifen, der Produktion von Schallschutzscheiben und bei Anlagen zur Elektrizitätsübertragung erreicht. Allerdings nehmen die Emissionen aus der Entsorgung von Schallschutzscheiben seit 2006 sichtbar zu, da die angenommene Lebenszeit dieser Scheiben erreicht worden ist (siehe Abb. „Emissionen fluorierter Treibhausgase“, Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“ und Abb. „Quellen der Emissionen fluorierter Treibhausgase“). In Zukunft ist damit zu rechnen, dass die F-Gas-Emissionen, insbesondere die HFKW-Emissionen, durch die Umsetzung der Verordnung (EU) Nr. 517/2014 weiter abnehmen. Wichtigstes Instrument der Verordnung ist die schrittweise Begrenzung der Verkaufsmengen von HFKW bis 2030 auf ein Fünftel der heutigen Verkaufsmengen, was sich zeitversetzt auf die Höhe der Emissionen auswirken wird. Die Schwefelhexafluorid-Emissionen aus der Entsorgung von Schallschutzscheiben stiegen bis 2019 und werden jetzt kontinuierlich sinken. Quellen der Emissionen fluorierter Treibhausgase Quelle: Umweltbundesamt Diagramm als PDF Emissionen fluorierter Treibhausgase („F-Gase“) Quelle: Umweltbundesamt Diagramm als PDF Tab: Emissionen ausgewählter Treibhausgase nach Kategorien Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Bedeutung von F-Gasen Fluorierte Treibhausgase (F-Gase) wirken sich je nach Substanz sehr stark auf das Klima aus, der Effekt ist bis zu 23.500-mal höher als bei Kohlendioxid. F-Gase sind daher Teil des Kyoto-Protokolls und der Nachfolgeregelungen. Herkunft von F-Gasen Während die klassischen Treibhausgase meist als unerwünschte Nebenprodukte freigesetzt werden, zum Beispiel bei der Verbrennung fossiler Rohstoffe, werden fluorierte Treibhausgase zum überwiegenden Teil gezielt produziert und eingesetzt. Sie werden heute in ähnlicher Weise verwendet wie früher FCKW , die die stratosphärische Ozonschicht zerstören. Fluorierte Treibhausgase werden hauptsächlich als Kältemittel in Kälte- und Klimaanlagen, Treibmittel in Schäumen und Dämmstoffen und als Feuerlöschmittel verwendet. Um die Emissionen dieser Stoffe zu vermindern, ist es neben technischen Maßnahmen vor allem zielführend, die Stoffe gezielt zu ersetzen oder alternative Technologien einzusetzen. Rechtsvorschriften Fluorierte Treibhausgase unterliegen wegen ihres hohen Treibhauspotenzials europäischer und nationaler Reglementierung. Auf europäischer Ebene ist das Inverkehrbringen und die Verwendung fluorierter Treibhausgase in der Verordnung (EU) 517/2014 und der Richtlinie 2006/40/EG geregelt. Die Verordnung gilt seit dem 01.01.2015 und ersetzt die bisherige Verordnung(EG) 842/2006. Ergänzend zu den EU-Regelungen gilt in Deutschland die Verordnung zum Schutz des Klimas vor Veränderungen durch den Eintrag bestimmter fluorierter Treibhausgase ( Chemikalien-Klimaschutzverordnung ).
Alternative reactor concepts A number of reactor concepts are being developed around the world as future alternatives to conventional nuclear power plants. A report commissioned by BASE analyses the development status, safety and regulatory framework of these concepts. Study on alternative reactor concepts BASE has commissioned a research project to analyse current developments in alternative reactor concepts that differ significantly from light water reactors. The term "so-called 'novel' reactor concepts" is used to denote them in this report. Various reactor concepts that are seen as future alternatives to conventional nuclear power plants are currently being developed around the world. They are often summarised under collective terms such as "4th generation reactors", "novel reactor concepts" or "advanced reactors". These alternative reactors are characterised by the fact that they can provide electricity much more cheaply than conventional nuclear power plants, are safer than conventional nuclear power plants, should be able to incubate new nuclear fuel, should be able to recycle radioactive waste, produce less waste, are less suitable for producing fissile material for nuclear weapons. But will the alternative reactor concepts live up to expectations? BASE has commissioned an expert report to investigate this question, and to analyse and evaluate the concepts regarding development status, safety and regulatory framework. You can view an interim report on the expert opinion here. Here you can find the summary of the study results . Historical development Research into a variety of different reactor concepts based on the use of different nuclear fuels, coolants, moderator materials and neutron spectra has been conducted since the 1940s and 1950s. Light water reactors, which include the pressurised and boiling water reactors operated in Germany, were the most successful in industrial terms. Around 90% of the global output of nuclear power plants is currently generated by light water reactors. Development of alternative reactor concepts As light water reactors also have shortcomings in terms of safety, fuel utilisation, efficiency and cost-effectiveness, interest in alternative concepts has been growing again for some time. These are often referred to as novel reactor types, but some of them are based on designs that have been under development for many decades and have not produced any commercially competitive construction lines to date. For this reason, the report commissioned by BASE refers to "so-called 'novel' reactor concepts". The Generation IV International Forum International efforts to develop alternative reactor concepts have been coordinated through the Generation IV International Forum (GIF) since 2001. The aim is to produce operational nuclear reactors of alternative technology lines with improved properties in the near future. Six different technology lines are being pursued: 1. Very High Temperature Reactor (VHTR) 2. Molten Salt Reactor (MSR) 3. Supercritical-water-cooled reactor (SCWR) 4. Gas-cooled fast reactor (GFR) 5. Sodium-cooled fast reactor (SFR) 6. Lead-cooled fast reactor (LFR) Other concepts are currently being developed outside the GIF's area of work, for example 7. Accelerator-driven subcritical reactor (Accelerator-driven Systems, ADS) Alternative technology lines 1) Very High Temperature Reactor (VHTR) While most conventional reactors (including the light water reactors operated in Germany) heat the water used as a cooling medium to temperatures of approx. 300°C, other reactor types operate at significantly higher temperatures. The high-temperature reactor is designed to reach temperatures of 750°C to over 1000°C. Such high temperatures allow for significantly higher efficiencies than other reactor types, i.e. a better yield when converting heat into electricity. Furthermore, the heat can alternatively be utilised for certain industrial processes such as the production of hydrogen. Very High Temperature Reactor © BASE How does the high-temperature reactor work? High-temperature reactor concepts use helium gas as a coolant instead of water. This allows the reactor to operate at lower pressure, making it more controllable at extremely high temperatures compared to conventional light water reactors. Uranium oxide or carbide is predominantly used as fuel. The fuel comes in small pellets that are encased in a protective shell. The pellets, in turn, are embedded in spheres or prismatic blocks of graphite, which serves as a moderator. These spheres or blocks represent the fuel elements. Coolant flows around them and absorbs the heat generated during the nuclear reaction. This heat can be used, for example, to heat water and drive a steam turbine. Advantages and disadvantages of high-temperature reactors? In addition to an increased efficiency and the generation of process heat at high temperatures, high-temperature reactors offer further advantages over conventional reactors. The design of the fuel elements and the helium cooling offer improved safety features. This means that additional safety systems can be used, some of which are not available in water-cooled reactors. Due to its design, the high-temperature reactor has a relatively low output in relation to the total volume of the reactor core. A core meltdown can, therefore, be ruled out. If the plant is suitably designed, natural uranium , thorium, plutonium or mixed oxides can also be used as fuel in addition to enriched uranium . However, the technology also has major disadvantages. The high temperature and the helium coolant pose a challenge in terms of selecting suitable materials. Gas-cooled reactors also often exhibit problems such as uneven cooling, high abrasion and dust formation as well as an increased risk of fire in the event of water or air ingress. This can lead to the release of radioactive substances . Due to the high content of radioactive graphite, the final disposal of spent fuel elements is estimated to be significantly more cost-intensive compared to conventional fuel elements. Development status of high-temperature reactors Gas-cooled high-temperature reactors have been the subject of research since the 1960s. Prototype plants based on this concept (the pebble bed reactors in Jülich and Hamm-Uentrop) were also developed in Germany. At the end of the 1980s, both plants were shut down due to various technical problems, and the technology was gradually abandoned in Germany. Other high-temperature reactor projects have been and continue to be developed in the UK, the USA , Japan and France, among others. A project in South Africa, which was based on AVR Jülich technology, was paused indefinitely due to technical difficulties and a lack of funding in 2010. A high-temperature experimental reactor, the HTR-10, which is also based on the pebble bed design , has been in operation in the People's Republic of China since 2003. Two further high-temperature reactors of the HTR-PM type there reached criticality as demonstration plants in autumn 2021. A similar project in the USA was discontinued before a prototype reactor was even built, but research on the high-temperature reactor concept is ongoing there. A general trend towards moderately high operating temperatures of 700-850°C can be observed in current developments. To date, there is no high-temperature reactor for commercial power generation in operation. 2.) Molten Salt Reactor – (MSR) Fuel in nuclear reactors is usually used in solid form as so-called fuel rods. In molten salt reactors, however, the fuel is molten salt that is pumped through the reactor. Molten Salt Reactor © BASE How does the molten salt reactor work? The fuel is a mix of molten salts (fluorides and chlorides). The concentration of the fissile fuel can be adjusted very accurately via the selection of the salts and their mixing ratio. This allows the production of the exact concentration required to maintain a stable chain reaction. The temperatures in the molten salt are approx. 600-700°C. Controlled nuclear reactions that generate heat take place inside the reactor. This heat can be used to heat water vapour and power a turbine for electricity generation. What are the advantages and disadvantages of molten salt reactors? The safety concept of molten salt reactors is based on basic physico-chemical properties and requires less active safety technology than conventional light water reactors, for example. A central feature of the safety concept is to drain the molten salt into designated containers in the event of malfunctions, thus preventing any further chain reaction. In addition, molten salt reactors can integrate what is known as chemical treatment. The fission products and the composition of the fission products , the fuel and the salt mixture used can be optimised during operation in an additional system in the primary circuit (fuel processing system). In contrast to light water reactors, there is no increased pressure in the primary circuit of a molten salt reactor, which means that some accident scenarios can be ruled out. A major disadvantage of the molten salt reactor is the increased corrosion inside the pipe systems. The hot fuel-salt mix corrodes the metals in the reactor, thus limiting their service life. This problem is also the subject of current research and an important reason why, to date, molten salt reactors only exist as research or pilot plants. Some concepts for molten salt reactors advertise the fact that they can also recycle radioactive waste . The idea is that so-called transuranium elements, which are produced in the reactor during nuclear fission , as well as individual long-lived fission products can be specifically converted, i.e. transmuted. This has not yet been developed to the point where it is ready for use. According to the current state of research , however, it would not be possible to convert all of the radioactive waste . New fission products would also be generated. There would, thus, be no advantage in terms of the final storage strategy pursued in Germany. Depending on the specific design of the molten salt reactor concept, radioactive residues would be produced that differ from those of previous light water reactors. The entire disposal chain would have to be adapted, from the development of suitable conditioning processes and new containers to the requirements for interim and final storage of the radioactive residues. Development status of molten salt reactors Molten salt reactors were last operated in the USA in the 1950s and 1960s in the form of two experimental reactors. Research into the further development of this technology is currently underway in several countries. This research is at very different stages and includes concept studies as well as theoretical and experimental preliminary work. The development of an experimental reactor in China (TMSR-LF1) is the most advanced such concept. The commissioning of this reactor, which has been under construction since 2018, was approved by the Chinese authorities in summer 2022. 3.) Supercritical-water-cooled Reactor – (SCWR) The supercritical-water-cooled reactor is similar in structure to a boiling water reactor, but the pressure and temperature are such that the water does not boil; instead it reaches a supercritical state. The water circulates in a simple cooling circuit and is fed directly into the turbine. Supercritical-water-cooled Reactor © BASE How do supercritical-water-cooled reactors work? The supercritical-water-cooled reactor is a nuclear reactor that uses supercritical water as a working medium. The water is always in a supercritical state, i.e. it has a temperature of over 374°C and a pressure of at least 221 bar. No phase transitions take place above this point, known as the ‘critical point’ of water, which means that the water will no longer boil or condense. The structure of the reactor corresponds to that of a boiling water reactor . The water in the reactor core is heated in a simple cooling circuit, and then fed directly into the turbine. Unlike in a boiling water reactor , the water does not vaporise in supercritical state. The coolant has a higher density and can, thus, absorb the heat more efficiently and transport it away from the core. The core temperature is higher than that of boiling and pressurised water reactors, and the pressure is significantly higher than that of pressurised water reactors (usually a maximum of 160 bar). What are the advantages and disadvantages of a reactor cooled with supercritical water? The design of the reactor is simple and the efficiency is high (up to 45 % ). The special neutron spectrum of the supercritical light water reactor has fast neutrons as well as thermal neutrons. These cause long-lived radionuclides to be transmuted into shorter-lived ones, meaning that the spent nuclear fuel will radiate for less time. One disadvantage is that, similar to the boiling water reactor , the turbine gets radioactively contaminated through direct contact with the cooling water in the primary circuit. The pressure in the circuit ( approx. 250 bar) is very high, which is why the reactor pressure vessel and all other components of the primary circuit have to be thicker and more stable than in conventional light water reactors. Due to the high pressure, damage to the primary circuit also poses an increased risk . Development status of reactors cooled with supercritical water The operation of coal-fired power plants with supercritical water was first trialled in the 1950s and is now standard in new construction projects. Research into the transfer of the concept to nuclear technology has been intensified since the 1990s. However, materials used in modern coal-fired power plants do not have sufficient corrosion resistance for use in the nuclear sector. Further relevant research and development into cladding and structural materials and safety functions is needed. At present, the most advanced designs come from China, the EU , Japan, Canada, Korea, Russia and the US. On the whole, however, development is at an early stage. There are currently no plans for a prototype system. 4.) Gas-cooled Fast Reactor – (GFR) Fast neutrons are used to split the nuclear fuel in gas-cooled fast reactors. These neutrons have a higher kinetic energy than the thermal neutrons used in light water reactors. Similar to high-temperature reactors, helium is used as a coolant. This facilitates particularly high outlet temperatures and increased efficiency compared to conventional light water reactors. Gas-cooled Fast Reactor © BASE How does a gas-cooled fast reactor work? The design of the reactor is similar to that of a classic pressurised water reactor (light water reactor). But instead of water, helium (other gases are also conceivable) is used as a coolant. Uranium, thorium, plutonium or compounds thereof are used as fuel. Unlike high-temperature reactors, which work with moderated thermal neutrons like conventional light water reactors, the fuel in fast reactors is split with fast neutrons. This means that the use of a moderator is not necessary. The high operating temperature of around 850°C yields high efficiencies or can be utilised as process heat for industrial processes. What are the advantages and disadvantages of gas-cooled fast reactors? The envisaged design of the reactor is relatively simple, and there is no need for a moderator at all. The use of unmoderated neutrons leads to transmutation, resulting in less long-lived nuclear waste. Moreover, helium as a coolant can be heated to very high temperatures and does not become radioactive itself. This is the drawback of fast gas-cooled reactors, as helium is not very thermally conductive, which results in increased requirements for cooling the reactor core during operation and immediately after shutdown. Due to the high temperatures, only particularly heat-resistant materials can be used. An additional stress arises from the high neutron flux. The unmoderated fast neutrons are more difficult to shield and can penetrate further into materials than moderated neutrons. This impairs the service life of these materials. Development status of gas-cooled fast reactors Work on the fast gas-cooled reactor concept has been ongoing in the US and Germany since the 1960s, and later also in the UK and Japan. Since the 2000s, research has primarily been driven by France. So far, however, no helium-cooled fast reactor has been built and operated. Extensive research and development are still required, particularly to find suitable fuels and cladding and structural materials for the high-temperature design . In addition, many questions regarding the necessary safety systems and the safety and reliability of operation in general remain unanswered. Generally speaking, development is still at the applied research stage, with no existing prototype designs. Commercial utilisation for power generation or industrial applications is not foreseeable. 5.) Sodium-cooled Fast Reactor – (SFR) In sodium-cooled fast reactors, the nuclear fuel is split using fast neutrons. The reactor core is located in a cooling pool (so-called pool design), which is filled with liquid sodium. A secondary sodium circuit absorbs the heat from the primary sodium pool and conducts it out of the reactor vessel for use in power generation. Sodium-cooled Fast Reactor © BASE How does the sodium-cooled fast reactor work? The reactor core containing the fuel is located in a pool-type container filled with liquid sodium. Sodium is used for its high thermal capacity and good conductivity. Sodium does not boil during operation, so there is no elevated pressure in the reactor vessel. A heat exchanger inside the reactor vessel transfers the heat from the main circuit sodium to a secondary circuit, which also contains liquid sodium. From this secondary circuit, the heat is transferred to a water-bearing tertiary circuit that drives a turbine to generate electricity. In contrast to many other reactor concepts, fast reactors use unmoderated fast neutrons. They can produce additional fissile material from non-fissile isotopes such as uranium -238 or thorium-232 during breeding reactions. Following reprocessing , the fissile material produced in this way can be used as nuclear fuel . Another promise is the reduction of long-lived nuclear waste through transmutation, provided the reactor and fuel production are designed accordingly. What are the advantages and disadvantages of sodium-cooled fast reactors? Thanks to its excellent heat capacity, sodium can completely absorb the decay heat of the fuel elements even without circulation. If, for example, the cooling system should fail due to a power failure, a core meltdown would be passively prevented. In the event of a leak, less coolant will escape as the primary and secondary circuits operate without pressure. This should result in advantages in terms of safety. However, specific accident risks such as sodium leaks and fires must be considered. In the event of a coolant leak, it is necessary to prevent the highly reactive sodium from coming into contact with water and oxygen. This requires additional safety barriers . The system is complex and comparatively expensive, not least because it requires three cooling circuits. Earlier decades saw the possibility of incubating additional fuel in reactors (breeder reaction) as an advantage in some cases. However, due to the quantity of uranium deposits worldwide, there were no major economic advantages to such an application. In addition, depending on the configuration, weapons-grade plutonium is incubated in the reactor. This increases the risk of proliferation of nuclear weapons-grade material. With regard to the transmutation of long-lived waste materials, it must be noted that no such application has yet been developed to operational maturity. According to the current state of research , it would not be possible to transmute all of the radioactive waste . In addition, new fission products would be produced. This would therefore not be an advantage for the final storage strategy pursued in Germany, for example. Development status of sodium-cooled fast reactors The sodium-cooled fast reactor was one of the first reactor concepts in the early days of civil nuclear energy utilisation. Sodium-cooled breeder reactors were and are in operation in several countries. One such experimental facility, the KNK -II, was operated at the German research centre in Karlsruhe from 1977 to 1991. The Kalkar nuclear power plant, which was based on the same technology, was never put into operation due to safety concerns. Three fast sodium-cooled reactors are currently in commercial operation in Russia and China, and others are under construction in both countries and in India. Research and development of reactor concepts for this technology line is ongoing in a large number of countries around the world. The "Generation IV International Forum" has given top priority to this development project. The plan is to press ahead with the development of an advanced fast sodium-cooled reactor with the option of transmuting particularly long-lived waste materials, and to move on to a trial phase in the 2020s. China, EURATOM , France, Japan, Korea, Russia and the USA are contributing to the research and development work. 6.) Lead-cooled Fast Reactor – (LFR) The lead-cooled fast reactor is based on nuclear fission using fast neutrons. Lead or a lead-bismuth alloy is used as the coolant. The primary circuit is designed to allow the liquid metal to circulate by natural convection. This means that there is no need for circulation pumps on the primary side. Electricity is generated by a turbine powered in the secondary circuit. Lead-cooled Fast Reactor © BASE How does the lead-cooled fast reactor work? The reactor has a pool design , which means that the reactor core is located in a pool-shaped container. The pool is filled with the coolant, which is either liquid lead or a lead-bismuth alloy. The metallic coolant does not boil during operation, meaning that normal pressure prevails in the reactor vessel. The heating and cooling processes in the various zones of the reactor vessel allow the coolant to circulate naturally without the need for pumps. A heat exchanger transfers the heat to a secondary circuit where a turbine is run to generate electricity. Depending on the design , the fast neutrons used in the reactor can incubate additional fuel (breeding reaction) or potentially cause a reduction in long-lived waste materials through transmutation. What are the advantages and disadvantages of lead-cooled fast reactors? Like other fast reactors, the lead-cooled fast reactor can be used to incubate additional fuel or to convert long-lived waste material into shorter-lived or stable material by means of transmutation. The reactor core can be designed in such a way that the amount of heat generated per volume is relatively low. The lead alloy can dissipate all of the heat via an automatically adjusted circulation system; no primary circuit pumps are needed. The primary circuit also operates completely without pressure. In addition, lead has very good shielding properties against the ionising radiation emitted by the fuel. One disadvantage of the system is that the lead-bismuth alloy must always be kept at temperatures above its melting point (min. 123 °C ). If not, it will solidify and the entire reactor will become unusable. The coolant must also be filtered at great expense. Lead and bismuth have very high densities, so the system requires stronger structures due to the enormous weight. Bismuth is also very rare and expensive. Development status of lead-cooled fast reactors A research project on lead-cooled fast reactors was already underway in the USA in the 1940s, but was discontinued in 1950. In the Soviet Union, reactors of this type were developed to power submarines, and were used until 1996. The 1990s/2000s witnessed a renewed interest in exploring the concept. Research and development projects are underway in the USA, China, Russia, South Korea and the EU, among others. Problems that still remain unresolved include the minimisation of corrosion and erosion risks due to the liquid metal circulating in the primary circuit and the filtration of the coolant. How does the high-temperature reactor work? High-temperature reactor concepts use helium gas as a coolant instead of water. This allows the reactor to operate at lower pressure, making it more controllable at extremely high temperatures compared to conventional light water reactors. Uranium oxide or carbide is predominantly used as fuel. The fuel comes in small pellets that are encased in a protective shell. The pellets, in turn, are embedded in spheres or prismatic blocks of graphite, which serves as a moderator. These spheres or blocks represent the fuel elements. Coolant flows around them and absorbs the heat generated during the nuclear reaction. This heat can be used, for example, to heat water and drive a steam turbine. Advantages and disadvantages of high-temperature reactors? In addition to an increased efficiency and the generation of process heat at high temperatures, high-temperature reactors offer further advantages over conventional reactors. The design of the fuel elements and the helium cooling offer improved safety features. This means that additional safety systems can be used, some of which are not available in water-cooled reactors. Due to its design, the high-temperature reactor has a relatively low output in relation to the total volume of the reactor core. A core meltdown can, therefore, be ruled out. If the plant is suitably designed, natural uranium , thorium, plutonium or mixed oxides can also be used as fuel in addition to enriched uranium . However, the technology also has major disadvantages. The high temperature and the helium coolant pose a challenge in terms of selecting suitable materials. Gas-cooled reactors also often exhibit problems such as uneven cooling, high abrasion and dust formation as well as an increased risk of fire in the event of water or air ingress. This can lead to the release of radioactive substances . Due to the high content of radioactive graphite, the final disposal of spent fuel elements is estimated to be significantly more cost-intensive compared to conventional fuel elements. Development status of high-temperature reactors Gas-cooled high-temperature reactors have been the subject of research since the 1960s. Prototype plants based on this concept (the pebble bed reactors in Jülich and Hamm-Uentrop) were also developed in Germany. At the end of the 1980s, both plants were shut down due to various technical problems, and the technology was gradually abandoned in Germany. Other high-temperature reactor projects have been and continue to be developed in the UK, the USA , Japan and France, among others. A project in South Africa, which was based on AVR Jülich technology, was paused indefinitely due to technical difficulties and a lack of funding in 2010. A high-temperature experimental reactor, the HTR-10, which is also based on the pebble bed design , has been in operation in the People's Republic of China since 2003. Two further high-temperature reactors of the HTR-PM type there reached criticality as demonstration plants in autumn 2021. A similar project in the USA was discontinued before a prototype reactor was even built, but research on the high-temperature reactor concept is ongoing there. A general trend towards moderately high operating temperatures of 700-850°C can be observed in current developments. To date, there is no high-temperature reactor for commercial power generation in operation. How does the molten salt reactor work? The fuel is a mix of molten salts (fluorides and chlorides). The concentration of the fissile fuel can be adjusted very accurately via the selection of the salts and their mixing ratio. This allows the production of the exact concentration required to maintain a stable chain reaction. The temperatures in the molten salt are approx. 600-700°C. Controlled nuclear reactions that generate heat take place inside the reactor. This heat can be used to heat water vapour and power a turbine for electricity generation. What are the advantages and disadvantages of molten salt reactors? The safety concept of molten salt reactors is based on basic physico-chemical properties and requires less active safety technology than conventional light water reactors, for example. A central feature of the safety concept is to drain the molten salt into designated containers in the event of malfunctions, thus preventing any further chain reaction. In addition, molten salt reactors can integrate what is known as chemical treatment. The fission products and the composition of the fission products , the fuel and the salt mixture used can be optimised during operation in an additional system in the primary circuit (fuel processing system). In contrast to light water reactors, there is no increased pressure in the primary circuit of a molten salt reactor, which means that some accident scenarios can be ruled out. A major disadvantage of the molten salt reactor is the increased corrosion inside the pipe systems. The hot fuel-salt mix corrodes the metals in the reactor, thus limiting their service life. This problem is also the subject of current research and an important reason why, to date, molten salt reactors only exist as research or pilot plants. Some concepts for molten salt reactors advertise the fact that they can also recycle radioactive waste . The idea is that so-called transuranium elements, which are produced in the reactor during nuclear fission , as well as individual long-lived fission products can be specifically converted, i.e. transmuted. This has not yet been developed to the point where it is ready for use. According to the current state of research , however, it would not be possible to convert all of the radioactive waste . New fission products would also be generated. There would, thus, be no advantage in terms of the final storage strategy pursued in Germany. Depending on the specific design of the molten salt reactor concept, radioactive residues would be produced that differ from those of previous light water reactors. The entire disposal chain would have to be adapted, from the development of suitable conditioning processes and new containers to the requirements for interim and final storage of the radioactive residues. Development status of molten salt reactors Molten salt reactors were last operated in the USA in the 1950s and 1960s in the form of two experimental reactors. Research into the further development of this technology is currently underway in several countries. This research is at very different stages and includes concept studies as well as theoretical and experimental preliminary work. The development of an experimental reactor in China (TMSR-LF1) is the most advanced such concept. The commissioning of this reactor, which has been under construction since 2018, was approved by the Chinese authorities in summer 2022. How do supercritical-water-cooled reactors work? The supercritical-water-cooled reactor is a nuclear reactor that uses supercritical water as a working medium. The water is always in a supercritical state, i.e. it has a temperature of over 374°C and a pressure of at least 221 bar. No phase transitions take place above this point, known as the ‘critical point’ of water, which means that the water will no longer boil or condense. The structure of the reactor corresponds to that of a boiling water reactor . The water in the reactor core is heated in a simple cooling circuit, and then fed directly into the turbine. Unlike in a boiling water reactor , the water does not vaporise in supercritical state. The coolant has a higher density and can, thus, absorb the heat more efficiently and transport it away from the core. The core temperature is higher than that of boiling and pressurised water reactors, and the pressure is significantly higher than that of pressurised water reactors (usually a maximum of 160 bar). What are the advantages and disadvantages of a reactor cooled with supercritical water? The design of the reactor is simple and the efficiency is high (up to 45 % ). The special neutron spectrum of the supercritical light water reactor has fast neutrons as well as thermal neutrons. These cause long-lived radionuclides to be transmuted into shorter-lived ones, meaning that the spent nuclear fuel will radiate for less time. One disadvantage is that, similar to the boiling water reactor , the turbine gets radioactively contaminated through direct contact with the cooling water in the primary circuit. The pressure in the circuit ( approx. 250 bar) is very high, which is why the reactor pressure vessel and all other components of the primary circuit have to be thicker and more stable than in conventional light water reactors. Due to the high pressure, damage to the primary circuit also poses an increased risk . Development status of reactors cooled with supercritical water The operation of coal-fired power plants with supercritical water was first trialled in the 1950s and is now standard in new construction projects. Research into the transfer of the concept to nuclear technology has been intensified since the 1990s. However, materials used in modern coal-fired power plants do not have sufficient corrosion resistance for use in the nuclear sector. Further relevant research and development into cladding and structural materials and safety functions is needed. At present, the most advanced designs come from China, the EU , Japan, Canada, Korea, Russia and the US. On the whole, however, development is at an early stage. There are currently no plans for a prototype system. How does a gas-cooled fast reactor work? The design of the reactor is similar to that of a classic pressurised water reactor (light water reactor). But instead of water, helium (other gases are also conceivable) is used as a coolant. Uranium, thorium, plutonium or compounds thereof are used as fuel. Unlike high-temperature reactors, which work with moderated thermal neutrons like conventional light water reactors, the fuel in fast reactors is split with fast neutrons. This means that the use of a moderator is not necessary. The high operating temperature of around 850°C yields high efficiencies or can be utilised as process heat for industrial processes. What are the advantages and disadvantages of gas-cooled fast reactors? The envisaged design of the reactor is relatively simple, and there is no need for a moderator at all. The use of unmoderated neutrons leads to transmutation, resulting in less long-lived nuclear waste. Moreover, helium as a coolant can be heated to very high temperatures and does not become radioactive itself. This is the drawback of fast gas-cooled reactors, as helium is not very thermally conductive, which results in increased requirements for cooling the reactor core during operation and immediately after shutdown. Due to the high temperatures, only particularly heat-resistant materials can be used. An additional stress arises from the high neutron flux. The unmoderated fast neutrons are more difficult to shield and can penetrate further into materials than moderated neutrons. This impairs the service life of these materials. Development status of gas-cooled fast reactors Work on the fast gas-cooled reactor concept has been ongoing in the US and Germany since the 1960s, and later also in the UK and Japan. Since the 2000s, research has primarily been driven by France. So far, however, no helium-cooled fast reactor has been built and operated. Extensive research and development are still required, particularly to find suitable fuels and cladding and structural materials for the high-temperature design . In addition, many questions regarding the necessary safety systems and the safety and reliability of operation in general remain unanswered. Generally speaking, development is still at the applied research stage, with no existing prototype designs. Commercial utilisation for power generation or industrial applications is not foreseeable. How does the sodium-cooled fast reactor work? The reactor core containing the fuel is located in a pool-type container filled with liquid sodium. Sodium is used for its high thermal capacity and good conductivity. Sodium does not boil during operation, so there is no elevated pressure in the reactor vessel. A heat exchanger inside the reactor vessel transfers the heat from the main circuit sodium to a secondary circuit, which also contains liquid sodium. From this secondary circuit, the heat is transferred to a water-bearing tertiary circuit that drives a turbine to generate electricity. In contrast to many other reactor concepts, fast reactors use unmoderated fast neutrons. They can produce additional fissile material from non-fissile isotopes such as uranium -238 or thorium-232 during breeding reactions. Following reprocessing , the fissile material produced in this way can be used as nuclear fuel . Another promise is the reduction of long-lived nuclear waste through transmutation, provided the reactor and fuel production are designed accordingly. What are the advantages and disadvantages of sodium-cooled fast reactors? Thanks to its excellent heat capacity, sodium can completely absorb the decay heat of the fuel elements even without circulation. If, for example, the cooling system should fail due to a power failure, a core meltdown would be passively prevented. In the event of a leak, less coolant will escape as the primary and secondary circuits operate without pressure. This should result in advantages in terms of safety. However, specific accident risks such as sodium leaks and fires must be considered. In the event of a coolant leak, it is necessary to prevent the highly reactive sodium from coming into contact with water and oxygen. This requires additional safety barriers . The system is complex and comparatively expensive, not least because it requires three cooling circuits. Earlier decades saw the possibility of incubating additional fuel in reactors (breeder reaction) as an advantage in some cases. However, due to the quantity of uranium deposits worldwide, there were no major economic advantages to such an application. In addition, depending on the configuration, weapons-grade plutonium is incubated in the reactor. This increases the risk of proliferation of nuclear weapons-grade material. With regard to the transmutation of long-lived waste materials, it must be noted that no such application has yet been developed to operational maturity. According to the current state of research , it would not be possible to transmute all of the radioactive waste . In addition, new fission products would be produced. This would therefore not be an advantage for the final storage strategy pursued in Germany, for example. Development status of sodium-cooled fast reactors The sodium-cooled fast reactor was one of the first reactor concepts in the early days of civil nuclear energy utilisation. Sodium-cooled breeder reactors were and are in operation in several countries. One such experimental facility, the KNK -II, was operated at the German research centre in Karlsruhe from 1977 to 1991. The Kalkar nuclear power plant, which was based on the same technology, was never put into operation due to safety concerns. Three fast sodium-cooled reactors are currently in commercial operation in Russia and China, and others are under construction in both countries and in India. Research and development of reactor concepts for this technology line is ongoing in a large number of countries around the world. The "Generation IV International Forum" has given top priority to this development project. The plan is to press ahead with the development of an advanced fast sodium-cooled reactor with the option of transmuting particularly long-lived waste materials, and to move on to a trial phase in the 2020s. China, EURATOM , France, Japan, Korea, Russia and the USA are contributing to the research and development work. How does the lead-cooled fast reactor work? The reactor has a pool design , which means that the reactor core is located in a pool-shaped container. The pool is filled with the coolant, which is either liquid lead or a lead-bismuth alloy. The metallic coolant does not boil during operation, meaning that normal pressure prevails in the reactor vessel. The heating and cooling processes in the various zones of the reactor vessel allow the coolant to circulate naturally without the need for pumps. A heat exchanger transfers the heat to a secondary circuit where a turbine is run to generate electricity. Depending on the design , the fast neutrons used in the reactor can incubate additional fuel (breeding reaction) or potentially cause a reduction in long-lived waste materials through transmutation. What are the advantages and disadvantages of lead-cooled fast reactors? Like other fast reactors, the lead-cooled fast reactor can be used to incubate additional fuel or to convert long-lived waste material into shorter-lived or stable material by means of transmutation. The reactor core can be designed in such a way that the amount of heat generated per volume is relatively low. The lead alloy can dissipate all of the heat via an automatically adjusted circulation system; no primary circuit pumps are needed. The primary circuit also operates completely without pressure. In addition, lead has very good shielding properties against the ionising radiation emitted by the fuel. One disadvantage of the system is that the lead-bismuth alloy must always be kept at temperatures above its melting point (min. 123 °C ). If not, it will solidify and the entire reactor will become unusable. The coolant must also be filtered at great expense. Lead and bismuth have very high densities, so the system requires stronger structures due to the enormous weight. Bismuth is also very rare and expensive. Development status of lead-cooled fast reactors A research project on lead-cooled fast reactors was already underway in the USA in the 1940s, but was discontinued in 1950. In the Soviet Union, reactors of this type were developed to power submarines, and were used until 1996. The 1990s/2000s witnessed a renewed interest in exploring the concept. Research and development projects are underway in the USA, China, Russia, South Korea and the EU, among others. Problems that still remain unresolved include the minimisation of corrosion and erosion risks due to the liquid metal circulating in the primary circuit and the filtration of the coolant. Further information on transmutation Partitioning and transmutation
Nationale Förderprogramme Förderung von Umschlaganlagen des Kombinierten Verkehrs (Interner Link) Innovationsförderung (Interner Link) im Schiffbau auch für Binnenschiffe geöffnet Seit Mitte August fördert die Bundesregierung im Bereich der Schiffbauförderung nicht mehr nur den Bau seegängiger Binnenschiffe, sondern hat die Förderung auf alle Binnenschiffe erweitert. Förderprogramm zur nachhaltigen Modernisierung von Binnenschiffen (Interner Link) Förderprogramm Austausch von noch in Betrieb befindlichen alten Dieselmotoren für Gütermotorschiffe (Interner Link) Förderprogramm zur nachhaltigen Modernisierung der Küstenschifffahrt (Externer Link) Förderung der Aus- und Weiterbildung (Interner Link) in der Binnenschifffahrt Förderprogramm zur Anschubfinanzierung regelmäßiger Großraum- und Schwertransporte auf Bundeswasserstraßen (Interner Link) Innovative Hafentechnologien Mit dem Förderprogramm für Innovative Hafentechnologien ( IHATEC ) (Externer Link) unterstützt das Bundesministerium für Digitales und Verkehr ( BMDV ) Forschungs- und Entwicklungsprojekte, die zur Entwicklung oder Anpassung innovativer Technologien in den deutschen See- und Binnenhäfen beitragen. Damit sollen diese ihrer Funktion als Drehscheiben des nationalen und internationalen Warenaustauschs auch zukünftig gerecht werden. Zudem soll die Wettbewerbsfähigkeit der deutschen Häfen gestärkt werden. Ein weiteres Augenmerk des Programms liegt auf der Verbesserung des Klima- und Umweltschutzes mit Hilfe von innovativen Hafentechnologien. Dazu sollen Logistikketten effizienter und die Vernetzung von Produktion und Logistik optimiert werden. Weiterhin sollen Produktinnovationen und neue Hafentechnologien eingeführt und im Markt etabliert werden. Ziel ist die digitale Infrastruktur zu verbessern indem die IT in den Häfen stärker genutzt und Logistikketten vorangetrieben werden. Die Weiterentwicklung von IT-Systemen und IT-Sicherheit ist ebenfalls ein wichtiger Ansatzpunkt zur Zielerreichung. Im Kontext innovativer Hafentechnologien sollen neue Arbeitsplätze geschaffen und bestehende gesichert werden. Im Zeitraum von 2021 bis 2025 beabsichtigt das Bundesministerium für Digitales und Verkehr (BMDV) für innovative Hafentechnologien rund 64 Millionen Euro bereitzustellen. Am 18. Januar 2024 startet das BMDV den vierten Förderaufruf und ruft ein weiteres Mal zur Einreichung neuer Ideen für „Innovative Hafentechnologien II“ (IHATEC II) auf und setzt damit die erfolgreiche Förderung des dritten Aufrufs fort. Ziel ist es, mit den Projekten eine Verstetigung der Forschungs- und Entwicklungsaktivitäten der Hafenwirtschaft zu unterstützen. Entwicklung bzw. Anpassung innovativer Technologien in den deutschen See- und Binnenhäfen sollen so forciert und damit den Herausforderungen der Digitalisierung der Hafenwirtschaft begegnet werden. Weitere Informationen können Sie dem Förderaufruf (PDF, extern) entnehmen. Förderprogramm Marktaktivierung alternativer Technologien für die umweltfreundliche Bordstrom- und mobile Landstromversorgung von See- und Binnenschiffen (Externer Link) Digitale Testfelder in Häfen (DigiTest) Das Bundesministerium für Digitales und Verkehr ( BMDV ) hat erneut einen Aufruf zur Förderung von digitalen Infrastrukturen zum Aufbau digitaler Testfelder in Häfen (Externer Link) gestartet. Die Testfelder sollen die Erprobung von Innovationen rund um die Logistik 4.0 unter Realbedingungen im Hafen ermöglichen. Weitere Informationen können der Förderrichtlinie (PDF, extern) entnommen werden. Forschung und Entwicklung von Digitalen Testfeldern an Bundeswasserstraßen Zur Förderung der automatisierten und vernetzten Schifffahrt unterstützt das Bundesministerium für Digitales und Verkehr ( BMDV ) weiterhin die Einrichtung von Testfeldern auf den Bundeswasserstraßen. Mit dem Förderprogramm Forschung und Entwicklung von Digitalen Testfeldern an Bundeswasserstraßen (Externer Link) soll der Industrie die Erprobung von Systemen für eine automatisierte Navigation ermöglicht werden. Beratungs- und Schulungsförderung für Binnenschifffahrtsunternehmen Die Bundesregierung fördert mittelständische Unternehmen durch einen Zuschuss zu den Kosten einer Unternehmensberatung und gibt dadurch einen Anreiz externes Know-how in Anspruch zu nehmen. Gefördert werden allgemeine Beratungen zu wirtschaftlichen, finanziellen, personellen oder organisatorischen Fragen, aber auch spezielle Beratungen, wie z. B. Technologie- und Innovationsberatungen. Die Zuschusshöhe beträgt 50 % der Beratungskosten für Unternehmen in den alten Bundesländern einschließlich Berlin und 75 % der Beratungskosten für Unternehmen in den neuen Bundesländern, maximal 1.500 Euro. Die Zuschüsse werden vom Bundesamt für Wirtschaft und Ausfuhrkontrolle ( BAFA ) bewilligt und ausgezahlt. Weitere Informationen finden Sie unter der Webseite des Bundesamtes für Wirtschaft und Ausfuhrkontrolle (Externer Link) . Europäische Förderprogramme Im Rahmen des Projektes PLATINA (Externer Link) wurde die Europäische Förderdatenbank (Externer Link) für Forschung, technologische Entwicklung und Demonstration für den Binnenschifffahrtssektor ins Leben gerufen. In dieser Förderdatenbank werden aktuelle Informationen zu nationalen und regionalen Fördertöpfen aus ganz Europa, leicht verständliche Datenblätter für europäische und nationale Förderprogramme sowie Kontaktpersonen und Informationen von Stellen und Organisationen, die für die Antragstellung zuständig sind veröffentlicht. RIS -Ausrüstungsprogramm der serbischen Wasserstraßendirektion auch für deutsche Binnenschifffahrt Die serbische Wasserstraßenverwaltung ( PLOVPUT ) hat ein RIS-Ausrüstungsprogramm gestartet, an dem auch die deutsche Binnenschifffahrt teilnehmen kann. Unter bestimmten Voraussetzungen kann die Ausrüstung mit Transpondern mit ECDIS - Viewern (Software und Laptop) beantragt werden. Serbien hat dazu Informationen (Externer Link) veröffentlicht, die in englischer Sprache abgerufen werden können. Stand: 26. Januar 2024
Das Projekt "Low thermal budget processing for continuous manufacturing of silicon solar cells" wird vom Umweltbundesamt gefördert und von Angewandte Solarenergie durchgeführt. General Information/Objectives: In order to reach thermal cost reduction as well as environmental safety, new approaches are necessary in the silicon solar cells industry. The aim of the present project is to investigate a new continuous manufacturing line based on low thermal budget processing steps relying on an optical energy transfer to the sample. The general goal of the LOWTHERMCELLS project, carried out by five laboratories (CNRS-PHASE, FhG-ISE, IMEC, ENEA and INSA) in association with industrial companies (AST, ASE and SOLTECH), is the replacement of all conventional thermal processing steps in solar cell manufacturing by Rapid Thermal (RT) steps using lamp furnaces. The main objective is a reduction of the total number of steps. In particular, for homogeneous emitter solar cells, the goal is to perform an entirely passive 'npp+ structure in a single thermal cycle and to suppress masking and photolithographic steps for selective emitters. Technical Approach This project concerns, for three of the five tasks, the development of the cell structure. Rapid thermal diffusion is used for a simultaneous formation of the emitter and back surface field (BSF) from different doped sources such as glasses, SiO2 or polysilicon layers deposited by spin-on, screen-printing or CVD processes. For surface passivation, rapid thermal oxidation, PE-CVD and doped or un-doped glass deposition are to be investigated together with a rapid thermal sintering of screen printed contacts. For selective emitter solar cells, an additional laser treatment is used to over-dope the regions under the contacts and to perform the grooving of buried contacts. The two other tasks concern the characterisation and production of the solar cells as well as the conceptual design and evaluation of the process by the industrial partners. They will test the stability under encapsulation of the cells (Soltech), design a continuous processing line integrating all the RT steps (AST) and perform an accurate economic evaluation of the LOWTHERMCELLS process (ASE). As preliminary results, 16.3 and 14.1 per cent conversion efficiencies have respectively been obtained by FhG-ISE for 5 x 5 cm2 CZ and by IMEC for 10 x 10 cm2 multicrystalline silicon solar cells. Expected Achievements and Exploitation The main output of this project is a simplification and reduction of the duration and number of thermal manufacturing steps of high efficiency silicon solar cells. The measurable goal is to achieve for 10 x 10 cm2 industrial cells a conversion efficiency of 17.0 per cent on CZ silicon and 15.5 per cent on multicrystalline substrates as well as 17.5 and 16.0 per cent on small 2 x 2cm2 laboratory cells, respectively. .. Prime Contractor: European Renewable Energy Centers Agency, Eurec Agency EEIG; Heverlee; Belgium.
Das Projekt "Einsatzmoeglichkeiten von nachwachsenden Rohstoffen am Beispiel Hanf zur naturnahen Abluftreinigung (ERNA)" wird vom Umweltbundesamt gefördert und von Hochschule Bremerhaven, Technologietransferzentrum, Umweltinstitut durchgeführt. Optimierungsmassnahmen bei der thermischen, katalytischen, sorptiven und biologischen Abgasreinigung konzentrieren sich auf die konstruktive Auslegung der Reinigungsanlagen und die MSR-Technik. Der alternative Einsatz von Pflanzenfasern fuer filternde Formteile wird derzeit gar nicht untersucht. Inhalt der ersten Projektphase sind daher die Erforschung der Einsatzmoeglichkeiten von Bestandteilen des Hanfes in der biologischen Abluft- und Abwasserreinigung sowie eine Marktanalyse fuer Produkte aus Pflanzenfasern. Das Ergebnis der Phase A (Praesentation nach ca. 6 Wochen) entscheidet ueber die Fortsetzung des Vorhabens in einer Anschlussphase B, die die Konzeption und Errichtung einer Technikumsanlage zum Inhalt hat. An dieser Anlage sollen Bestandteile des Hanfes, spaeter auch andere Faserpflanzen, hinsichtlich ihres Einsatzes in Biofiltern, Biowaeschern und in kombinierten Anlagen geprueft werden. Der Forschungsschwerpunkt liegt in der wissenschaftlichen Untersuchung der Wirkungsgrade ueber Roh- und Reingasuntersuchungen der neuen Biofilter im Vergleich zu bisher angebotenen Biofiltern sowie in der Untersuchung der Kenndaten der neuen Filter, z.B. Standzeiten und Homogenitaet. Ein weiteres Ziel ist die Definition optimaler Einsatzbereiche.
Origin | Count |
---|---|
Bund | 1180 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 1171 |
Text | 9 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 8 |
offen | 1173 |
Language | Count |
---|---|
Deutsch | 1178 |
Englisch | 179 |
unbekannt | 1 |
Resource type | Count |
---|---|
Dokument | 7 |
Keine | 759 |
Webseite | 416 |
Topic | Count |
---|---|
Boden | 832 |
Lebewesen & Lebensräume | 767 |
Luft | 628 |
Mensch & Umwelt | 1181 |
Wasser | 466 |
Weitere | 1171 |