API src

Found 5690 results.

Related terms

Projekt Waldkalkung

Zweck der Waldkalkungen ist, der zum Teil tief reichenden Versauerung der Waldböden entgegenzuwirken. Die fortschreitende Versauerung der Böden geht mit erheblichen Schädigungen des Ökosystems Wald einher. So werden mit sinkenden pH-Werten (Säuregradmesser) das giftige Aluminium und Schwermetalle ausgewaschen, die die Wurzeln der Bäume schädigen und ins Grundwasser verlagert werden. Auch Nährstoffe werden dem Boden entzogen und stehen damit den Pflanzen nicht mehr zur Verfügung. Durch die Kalkungsmaßnahmen werden die Waldböden sozusagen mit einer Schutzhülle aus Kalk bedeckt. Der Kalk soll die über die Niederschläge eingetragenen Säuremengen in den obersten Bodenschichten über einen gewissen Zeitabschnitt neutralisieren, um damit den Bodenzustand zu stabilisieren und ggfs. auch wieder zu verbessern. Die Kalkung dient zudem auch dem Grundwasser- und damit letztlich dem Trinkwasserschutz. Besonders kalkungsbedürftig sind die Waldflächen der Buntsandsteingebiete im Saarland, da deren Böden von Natur aus ein nur geringes Pufferungsvermögen gegenüber Säureeinträgen aufweisen. Den Kalkungsmaßnahmen vorausgegangen waren bodenchemische Analysen durch das Landesamt für Umwelt und Arbeitsschutz (LUA), um zuverlässige Aussagen über den Bodenzustand zu erhalten. Im Anschluss an die Kompensationskalkung wird es weitere Untersuchungen im Sinne einer Wirkungskontrolle geben. Von der Kalkung ausgeschlossen werden einerseits aus Naturschutzgründen sensible Flächen (z.B. Naturschutzgebiete, Naturwaldzellen u.ä.). Anderseits werden Verkehrsflächen und siedlungsnahe Flächen ausgeschlossen. Die Kompensationskalkung erfolgt ausschließlich in der vegetationsarmen Zeit, da nur dann sichergestellt ist, dass eine möglichst große Kalkmenge den Boden auch erreicht. Ausgebracht wird der Magnesiumkalk per Hubschrauber. Bei einer Menge von etwa 3 Tonnen pro Hektar können so pro Tag zwischen 60 und 75 Hektar Wald behandelt werden.

Optimierung der Abwaermenutzung in einer Aluminiumgiesserei

Beim Schmelzen von Aluminium werden grosse Rauchgasmengen erzeugt. Der Chargenbetrieb der Schmelzoefen hat Schwankungen der Rauchgastemperatur und des -volumenstroms zur Folge. In Zusammenarbeit mit der Hamburger Aluminiumwerk GmbH wurde fuer diese Rauchgase ein optimales Abwaermenutzungskonzept erarbeitet, das einen Dampfkreislauf bestehend aus Dampferzeuger, Turbogenerator und Kondensator vorsieht. Der Turbogenerator ist in der Lage, einen betraechtlichen Teil zur elektrischen Stromversorgung der Aluminiumelektrolyse beizutragen, was indirekt ueber eine Einsparung von Primaerenergie zu einer Reduzierung des CO2-Ausstosses fuehrt.

BMDV-Expertennetzwerk TF 204: Metallische Überzüge im Korrosionsschutz von Stahlwasserbauwerken

Feuer- und Spritzverzinkung In diesem Vorhaben sollen die Korrosionsschutzwirkung, die physikalischen Eigenschaften und die ökotoxikologische Wirkung von Metallisierungen, vor allem von Verzinkungen, im Stahlwasserbau untersucht werden. Aufgabenstellung und Ziel Der Korrosionsschutz von Stahlwasserbauwerken erfolgt in der Regel durch organische Beschichtungen, teilweise in Kombination mit kathodischem Korrosionsschutz. Metallische Überzüge, wie beispielsweise Verzinkungen, können ebenfalls für den schweren Korrosionsschutz eingesetzt werden (Nürnberger 1995). Im Stahlwasserbau in Deutschland sind diese jedoch unüblich, vor allem wegen Vorbehalten bezüglich einer geringen Nutzungsdauer durch Auflösung im Kontakt mit dem Gewässer. In diesem Projekt sollen die physikalischen Eigenschaften und die ökotoxikologische Wirkung von Metallisierungen, vor allem von Verzinkungen, im Stahlwasserbau untersucht werden. Bestehende Erfahrungen aus dem Wasserbau in Deutschland und anderen Ländern sollen evaluiert und durch eigene Untersuchungen ergänzt werden. Im Ergebnis sollen die Einsatzmöglichkeiten und Einsatzgrenzen von Metallisierungen im Stahlwasserbau beschrieben werden. Dabei sollen auch Auswirkungen des gegebenenfalls aufgelösten Metalls auf das Gewässer betrachtet werden. Der konkrete Fokus liegt dabei auf den Themen: - Bewertung der Auswirkungen metallischer Überzüge auf Stahlplatten sowohl im Labor als auch in der Natur; - Auswertung der vorhandenen Erfahrungen aus dem Wasserbau in Deutschland und anderen Ländern; - Beschreiben von Einsatzmöglichkeiten und Grenzen der Spritz- und Feuerverzinkung im Stahlwasserbau. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Verzinkungen werden als mögliche Alternative zu den üblichen Korrosionsschutzbeschichtungen diskutiert. Mit dem Ergebnis dieser Untersuchung kann eine fundiertere Entscheidung über den konkreten Anwendungsfall getroffen werden. Untersuchungsmethoden Zunächst werden in Zusammenarbeit mit dem Chemielabor der BAW die Metallplatten, die für die Feuer- und Spritzverzinkung verwendet werden, zu Informationszwecken mithilfe der optischen Emissionsspektrometrie auf ihren Si-Gehalt hin untersucht. Anschließend werden die Platten und Bleche in einer Verzinkerei spritz- und feuerverzinkt. Die Feuerverzinkung wird nach DIN EN ISO 1461 (Durch Feuerverzinken auf Stahl aufgebrachte Zinküberzüge (Stückverzinken) - Anforderungen und Prüfungen) durchgeführt. Die Spritzverzinkung wird nach DIN EN ISO 2063-1 (Thermisches Spritzen - Zink, Aluminium und deren Legierungen) durchgeführt. Danach werden Leistungstests vorgenommen, um die Eigenschaften der Feuer- und Spritzverzinkung gemäß den folgenden Normen zu untersuchen und zu analysieren. Die Naturauslagerung wird an zwei Standorten, in Trier und Kiel, stattfinden. Die ökotoxikologischen Auswirkungen werden auf theoretische Weise mit einer systematischen Literaturrecherche auf der Grundlage der RBS-Roadmap von Carlos Conforto et al. (2011) und des Wissensaustauschs mit der BfG analysiert. Folgende Untersuchungsmethoden sind geplant: - Austausch mit Betreibern von Anlagen mit Metallisierung, national und international, gegebenenfalls mit Begutachtung vor Ort; - Physikalische Untersuchungen zur Dauerhaftigkeit in Labor und Naturversuch; - Ökotoxikologische Bewertung (in Zusammenarbeit mit der BfG) durch Literaturrecherche.

Kreislaufsystem für funktionales Aluminium-Neuschrottrecycling aus der Automobilproduktion mittels LIPS, Teilvorhaben: Aufbereitung

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Structure and electronic transport properties of metallic liquids at conditions of planetary cores

Electrical conductivity is a key parameter in models of magnetic field generation in planetary interiors through magneto-hydrodynamic convection. Measurements of this key material parameter of liquid metals is not possible to date by experiments at relevant conditions, and dynamo models rely on extrapolations from low pressure/temperature experiments, or more recently on ab-initio calculations combining molecular dynamics and linear response calculations, using the Kubo-Greenwood formulation of transport coefficients. Such calculations have been performed for Fe, Fe-alloys, H, He and H-He mixtures to cover the interior of terrestrial and giant gas planets. These simulations are computationally expensive, and an efficient accurate scheme to determine electrical conductivities is desirable. Here we propose a model that can, at much lower computational costs, provide this information. It is based on Ziman theory of electrical conductivity that uses information on the liquid structure, combined with an internally consistent model of potentials for the electron-electron, electron-atom, and atom-atom interactions. In the proposal we formulate the theory and expand it to multi-component systems. We point out that fitting the liquid structure factor is the critical component in the process, and devise strategies on how this can be done efficiently. Fitting the structure factor in a thermodynamically consistent way and having a transferable electron-atom potential we can then relatively cheaply predict the electrical conductivity for a wide range of conditions. Only limited molecular dynamics simulations to obtain the structure factors are required.In the proposed project we will test and advance this model for liquid aluminum, a free-electron like metal, that we have studied with the Kubo-Greenwood method previously. We will then be able to predict the conductivities of Fe, Fe-light elements and H, He, as well as the H-He system that are relevant to the planetary interiors of terrestrial and giant gas planets, respectively.

Altbatterien

<p>Altbatterien können giftige Schwermetalle wie Quecksilber, Cadmium und Blei sowie stark brennbare Inhaltsstoffe enthalten. Um Mensch und Umwelt zu schützen und Wertstoffe in hohem Maße wiederzugewinnen, müssen sie getrennt vom unsortierten Siedlungsabfall gesammelt und recycelt werden</p><p>Im Jahr 2023 hat Deutschland alle von der EU geforderten Mindestziele erreicht</p><p>Die Masse von 213.595 Tonnen (t) Altbatterien, die den speziellen Recyclingverfahren für Altbatterien zugeführt wurden, stieg im Vergleich zum Vorjahr um 0,4 Prozent (%). Somit konnten 166.709 t Sekundärrohstoffe wiedergewonnen werden.</p><p>In den einzelnen Verfahren waren das unter anderem Blei, Schwefelsäure, Eisen/Stahl, Ferromangan, Nickel, Zink, Kupfer, Aluminium, Cadmium sowie Kobalt und Lithium. Diese Rohstoffe können im Rahmen einer Kreislaufführung erneut zur Batterie- und Akkuherstellung eingesetzt werden.</p><p>Untergliedert man die der stofflichen Verwertung zugeführte Gesamtmenge an Altbatterien in die im europäischen Berichtswesen gängigen drei Kategorien</p><p>wird der beständig hohe Anteil der Blei-Säure-Altbatterien am Gesamtmarkt der Altbatterien deutlich. Gegenüber dem Vorjahr erhöhte sich die recycelte Masse der Blei-Säure-Altbatterien sogar um 7.473 t.</p><p>In die Kategorie „sonstige Altbatterien“ ordnen sich mengenmäßig insbesondere Lithium-Ionen (Li-Ion), Alkali-Mangan (AlMn)- und Zink-Kohle (ZnC)-Altbatterien ein. Nach 37.100 t im Jahr 2021 und 33.594 t im Jahr 2022 waren es 2023 noch 27.172 t sonstige Altbatterien, die einem Recyclingverfahren zugeführt wurden. Ein ansteigender Rücklauf ausgedienter Li-Ion-Akkus, bspw. aus dem Fahrzeug- oder stationären Energiespeicherbereich konnte noch nicht verzeichnet werden.</p><p>Für das Jahr 2023 wurden – entsprechend der Methodik der<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1539943366156&amp;uri=CELEX:32012R0493">Recyclingeffizienzverordnung (EU) 493/2012</a>– folgende durchschnittliche Recyclingeffizienzen für Verfahren der Recyclingbetriebe erzielt:</p><p>Das Ziel der<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1539943366156&amp;uri=CELEX:32012R0493">Recyclingeffizienzverordnung (EU) 493/2012</a>, die im Jahr 2012 in Kraft trat, ist die Vergleichbarkeit der Recyclingeffizienzen der EU-Mitgliedstaaten durch eine einheitliche Berechnungsgrundlage. Die Begriffe Output- und Inputfraktion sind im Artikel 2 Abs. 1 Nr. 4 und Nr. 5 in Verbindung mit Anhang I dieser Verordnung definiert.<br>Die Recyclingeffizienz eines Recyclingverfahrens erhält man, indem die Masse der zurückgewonnenen Sekundärrohstoffe (Outputfraktionen) zur Masse der Altbatterien, die dem Verfahren zugeführt wurde (Inputfraktionen), ins Verhältnis gesetzt wird.<p>Zur Bewertung der Ergebnisse der deutschen Recyclingbetriebe kann die folgende Abbildung, die die ermittelten durchschnittlichen Recyclingeffizienzen den EU-Mindestzielen gegenübergestellt, beitragen (siehe Abb. „Effizienzen der Recyclingverfahren für Altbatterien 2022 und 2023“).</p><p>Bei der Darstellung von durchschnittlichen Recyclingeffizienzen, die der Prüfung der EU-Mindestziele dienen, kann es vorkommen, dass einzelne ineffiziente Recyclingverfahren die Zielanforderungen nicht erreichen und aufgrund der Systematik unerkannt bleiben. Unsere Einzelfallbetrachtung zeigt jedoch, dass alle Recyclingverfahren die Mindestziele erfüllen oder sogar weit übertreffen. Einzig die Recyclingverfahren für Nickel-Cadmium-Batterien liefern ein differenziertes Bild: So zählen die Verfahren mit 75,2&nbsp;% zwar zu den effizientesten Recyclingverfahren – im Vergleich zu den gesetzlichen Mindestvorgaben in Höhe von 75&nbsp;% wurden die Mindestziele jedoch nur knapp erreicht.</p><p>Ferner übermitteln die Rücknahmesysteme für Geräte-Altbatterien ausführliche Daten zu den Verwertungsergebnissen der Geräte-Altbatterien im Rahmen der jährlichen Erfolgskontrollberichte – eine aktuelle<a href="https://www.ear-system.de/ear-verzeichnis/battgruecknahmesysteme">Liste der genehmigten Rücknahmesysteme für Gerät-Altbatterien</a>stellt die stiftung elektro-altgeräte (stiftung ear) zur Verfügung.</p><p>Die Masse der Geräte-Altbatterien, die einem Recyclingverfahren zur stofflichen Verwertung zugeführt wurde, betrug den Angaben der Rücknahmesysteme zufolge im Jahr 2023 30.483 t (2022: 35.123 t). Die Verwertungsquote für Geräte-Altbatterien, die ausdrückt, wieviel von den gesammelten Altbatterien einer stofflichen Verwertung zugeführt wurden, betrug exakt 100,0 % nach 108,4 % im Jahr 2022. Die erreichte Quote spiegelt wider, dass im Jahr 2023 alle gesammelten Altbatterien einer stofflichen Verwertung zugeführt wurden. Nennenswerte Altbatteriemengen, die nicht identifiziert und recycelt werden konnten, gab es im Berichtsjahr 2023 nicht.<em></em></p><p><em>Wie erklären sich Verwertungsquoten von unter oder über 100 % in einzelnen Jahren?</em></p><p>Da sich die Verwertungsquote auf die Sammlung und die Verwertung von Altbatterien eines Kalenderjahres bezieht, resultieren Verwertungsquoten unter oder über 100 % größtenteils aus dem Auf- oder Abbau von Lagerbeständen, bspw. bei Sortier- und Recyclinganlagen.</p><p>Im Ergebnis belegen die aktuellen Daten, dass sowohl Sammlung als auch Sortierung – zur Sicherstellung des Altbatterierecyclings – etabliert sind und Recyclingbetriebe, die zugeführten Altbatterien über die Mindestziele hinaus recyceln.</p><p>Die Sammelquote für Geräte-Altbatterien sank im Jahr 2023 auf 50,4 Prozent</p><p>Im Jahr 2023 wurden in Deutschland 55.197 t Gerätebatterien in Verkehr gebracht. Gegenüber dem Vorjahr war das ein Rückgang um 7.937 t. Die Masse der zurückgenommenen Geräte-Altbatterien verringerte sich gegenüber dem Vorjahr um 1.938 t auf 30.483 t. Dies entspricht einem Rückgang von ca. 5,9 %. Im Ergebnis betrug die Sammelquote 50,4 % (2022: 50,7 %). Das Mindestsammelziel gemäß der derzeit noch gültigen<a href="https://eur-lex.europa.eu/eli/dir/2006/66">EU-Batterie-Richtlinie</a>(2006/66/EG) in Höhe von 45 % wurde damit erfüllt. Ebenfalls erfüllt wurde die auf Grundlage des Batteriegesetzes geltende Sammelquote von 50 % für Geräte-Altbatterien. (siehe Abb. „Gerätebatterien: Sammelquote stieg im Berichtsjahr 2023“).</p><p>Die von den Rücknahmesystemen für Geräte-Altbatterien veröffentlichten Berichte und ermittelten individuellen Sammelquoten des Berichtsjahres 2023 sind unter folgenden Links im Internet abrufbar:</p><p>Die Rücknahmesysteme müssen jeweils im eigenen System jährlich das gesetzlich vorgegebene Mindestsammelziel erreichen und dauerhaft sicherstellen. Da nicht alle Rücknahmesysteme ihre Sammelquoten im Einklang mit den vom Umweltbundesamt zur einheitlichen Berechnung der Sammelquoten und Überprüfung der Mindestsammelziele bekanntgegebenen Hinweisen ermittelt haben, ist eine unmittelbare Vergleichbarkeit der jeweils veröffentlichten Sammelergebnisse nicht gegeben. Rücknahmesysteme, die bei der Ermittlung der Sammelquote nicht den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Hinweisen gefolgt sind, weisen dies in ihren Berichten aus.</p><p>Hintergrund: Für eine dauerhafte Sicherstellung der Sammelquote ist unter Umständen ein rechnerischer Faktor (sogenannter dS-Faktor) bei der Ermittlung der Sammelquote zu berücksichtigen. Ohne Anwendung dieses mathematischen Ausgleichsfaktors kann durch eine unterjährige Wechselkonstellation die Situation entstehen, dass Hersteller beim Wechsel in ein neues Rücknahmesystem bei mehrjähriger Betrachtung eine geringere Masse Geräte-Altbatterien zur Erreichung des Sammelziels zurücknehmen müssten als Hersteller, die im alten Rücknahmesystem verblieben sind und die gleiche Masse an Batterien im gleichen Zeitraum in Verkehr gebracht haben. Insofern sorgt der Ausgleichsfaktor für verbesserte Wettbewerbsbedingungen unter den Rücknahmesystemen.</p><p>Gerätebatteriemarkt: Menge der in Verkehr gebrachten nicht wiederaufladbaren Batterien und Akkus sinkt im Jahr 2023 deutlich</p><p>Die Gerätebatterien unterteilen sich in die Primär- und die Sekundärbatterien. Als Primärbatterien (nicht wiederaufladbar) bezeichnet man die herkömmlichen Einwegbatterien. Sekundärbatterien (wiederaufladbar) werden in der Regel Akkus genannt und können nach Gebrauch mit einem Ladegerät mit neuer Energie versorgt werden.</p><p><strong>Primärbatterien</strong>:</p><p><strong>Sekundärbatterien</strong>:</p><p>Im Jahr 2023 wurden 36,0 % der Gerätebatterien als Akkus in Verkehr gebracht. Einhergehend mit der Gesamtmarktentwicklung verringerte sich allerdings auch im Bereich der Sekundärbatterien die Inverkehrbringungsmenge. Im Jahr 2023 verzeichnete die Menge einen Rückgang um 1.981 t auf insgesamt 19.359 t.</p><p>Bei einer Betrachtung über einen längeren Zeitraum von 2010-2023 zeigt sich: Die Masse der Akkus erhöhte sich in diesem Zeitraum um über 70 %. (siehe Abb. „Gerätebatterien: Entwicklung der in Verkehr gebrachten Primär- und Sekundärbatterien und der größten Batteriesysteme"). Unter ökologischen Aspekten ist eine weitere Steigerung des Akku-Anteils wünschenswert. Akkus können mehrfach wiederaufgeladen werden und verbessern so ihre Umwelt- und Energiebilanz. Ersetzt man beispielsweise Primärbatterien der Baugröße AA durch NiMH-Akkus gleicher Baugröße, lässt sich etwa ein halbes Kilogramm klimarelevantes Kohlendioxid pro Servicestunde der Batterie sparen<a href="https://www.yumpu.com/de/document/view/18213860/klimabilanz-batterien-climatop">(climatop 2009)</a>. Die Klimabelastung pro Servicestunde lässt sich weiter senken, wenn der Akku jeweils langsam aufgeladen und das Ladegerät nach Gebrauch vom Stromnetz getrennt wird.</p>

Messstelle Pegel Roth oh Mdg., Fließgewässer Roth

Die Messstelle Pegel Roth oh Mdg. (Messstellen-Nr: 16631) befindet sich im Gewässer Roth. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.

Messstelle oh Mdg. uh Zirndorf, Fließgewässer Bibert

Die Messstelle oh Mdg. uh Zirndorf (Messstellen-Nr: 17120) befindet sich im Gewässer Bibert. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.

Messstelle Kirchberg Br., Fließgewässer Mertseebach

Die Messstelle Kirchberg Br. (Messstellen-Nr: 13027) befindet sich im Gewässer Mertseebach. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.

Messstelle oh Mdg., Fließgewässer Sittenbach

Die Messstelle oh Mdg. (Messstellen-Nr: 17409) befindet sich im Gewässer Sittenbach. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.

1 2 3 4 5567 568 569