Cytologische und biochemische Untersuchung der Alveolarmakrophagen sowie Bestimmung der Serum-Immunglobuline der Immunreaktion auf Fremdkoerper an Ratten nach Langzeitexposition gegenueber Schwermetallsalzen und -oxiden.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Asbestzementplatten enthalten 15 - 20 Prozent Chrysotil. Durch fortgesetzte meteorologische Einfluesse kann es zur Verwitterung kommen. Fasern mit und ohne Zement-Kontamination werden freigesetzt und gelangen in Luft und Regenwasser. Von einer bereits verwitterten Asbestzementplatte wurden verschiedene Staubproben praepariert (Fraunhofer Gesellschaft, Grafschaft). Diese Proben werden in unterschiedlichen in vitro-Modellen und im 'Intraperitoneal-Test' an Ratten auf toxische und kanzerogene Wirkung untersucht. Folgende in-vitro-Methoden kommen zum Einsatz: 1. Haemolyse, 2. Enzymrelease bei Alveolarmakrophagen, 3. Phagozytoseverhalten von Alveolarmakrophagen (AM), 4. Arylhydrocarbon-Hydroxylaseaktivitaet von AM, 5. Zellproliferation von Zell-Linien, 6. Enzymrelease von proliferierenden Zellen. Zur Ermittlung der kanzerogenen Potenz von AZ-Staeuben wurden diese in verschiedenen Konzentrationen, in Abhaengigkeit von ihrem Fasergehalt, Ratten intraperitoneal appliziert. Alle Untersuchungen werden im Vergleich zu verschiedenen 'reinen' Chrysotilfraktionen und Zement durchgefuehrt.
Das Forschungsvorhaben dient der Prävalidierung eines in vitro-Verfahrens, das als Ersatzmethode zum Tierversuch die Risikobeurteilung schwer löslicher, lungengängiger Partikel erlauben soll. Die Validierung und Überführung des Verfahrens in eine OECD-Richtlinie sollen Gegenstand eines Anschlussvorhabens werden. Die experimentellen Arbeiten werden vom IBE R&D gGmbH, der AG Frede (Universitätsklinikum Essen) und der AG Albrecht (IUF Düsseldorf) durchgeführt und in einem gemeinsamen Arbeitsplan beschrieben. Ausgangsbasis ist das bei der IBE R&D gGmbH genutzte Vektorenmodell zur Auswertung biologischer Antworten von Alveolarmakrophagen auf lungengängige Partikel. Als Standard dienen von drei Industriepartnern bereitgestellte Proben. Das vorhandene Vektorenmodell soll durch Verwendung von Zelllinien an den Stand der Wissenschaft angepasst werden. Dazu wird u.a. die Phagozytoseleistung der Zellen, die Zellschädigung und Apoptose, die Produktion von relevanten Signalmolekülen (zahlreiche Interleukine) sowie die Freisetzung von reaktiven Sauerstoffspezies und Stickstoffmonoxid mit aktuellen Methoden erfasst und mit den Werten isolierter Alveolarmakrophagen verglichen. Geeignete Parameter werden in eine Score-Skala zur Gesamtbeurteilung der Toxizität einfließen, deren Aussagekraft mit biometrischen Verfahren abgesichert wird. Die Prävalidierung soll mit einem Ringversuch abgeschlossen werden, der anhand GLP-fähiger Standardvorschriften von den drei o.g. Gruppen durchgeführt wird. Mit dem erweiterten Vektorenmodell will das IBE R&D gGmbH seine Position als Entwickler alternativer Testmethoden stärken. Eine Patentanmeldung sowie einschlägige Publikationen werden in Betracht gezogen. Erträge sollen für den weiteren Aufbau des IBE R&D gGmbH eingesetzt werden. Die Prävalidierung bildet die Grundlage für die Validierung des Verfahrens, das die Anzahl der z.B. im REACH-Prozess geforderten Tierversuche senken soll.
| Origin | Count |
|---|---|
| Bund | 37 |
| Type | Count |
|---|---|
| Förderprogramm | 37 |
| License | Count |
|---|---|
| offen | 37 |
| Language | Count |
|---|---|
| Deutsch | 35 |
| Englisch | 4 |
| Resource type | Count |
|---|---|
| Keine | 26 |
| Webseite | 11 |
| Topic | Count |
|---|---|
| Boden | 31 |
| Lebewesen und Lebensräume | 37 |
| Luft | 33 |
| Mensch und Umwelt | 37 |
| Wasser | 31 |
| Weitere | 37 |