Cytologische und biochemische Untersuchung der Alveolarmakrophagen sowie Bestimmung der Serum-Immunglobuline der Immunreaktion auf Fremdkoerper an Ratten nach Langzeitexposition gegenueber Schwermetallsalzen und -oxiden.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Inhalierte Nanopartikel, die in den Alveolarbereich der Lunge vordringen können, werden dort ganz überwiegend von Alveolarmakrophagen aufgenommen und aus dem Organ heraustransportiert. Ein sehr kleiner Anteil der Nanopartikel kann jedoch auch in andere Zellen der Lunge gelangen oder erreicht periphere Organe und Gewebe, in denen weitere Effekte ausgelöst werden könnten. Um diese Prozesse genauer zu untersuchen, wollen die Partner des Projekts NanoBioDetect Nanopartikel mit State-of-the-Art Methoden in der Lunge und anderen Zielorganen detektieren. Ziel ist es, den Einfluss von Nanopartikeln auf Körperfunktionen noch besser zu verstehen, indem Zelltypen, die Nanopartikel enthalten, zunächst identifiziert und charakterisiert werden. Die pro Zelle enthaltene Partikelmasse soll nach Möglichkeit quantifiziert werden. Weitere Arbeiten werden sich der Detektion veränderter Biomoleküle widmen, zu denen u.a. Protein- oder DNA-Modifikationen gehören. Neben Nanopartikel-haltigen Zellen werden auch Geweberegionen untersucht, in denen Nanopartikel angereichert sind. Obschon Effekte von zumeist hohen Nanopartikelkonzentrationen seit langem für Zellen in vitro beschrieben sind, ist die Übertragbarkeit dieser Resultate auf den komplexen Organismus noch immer unklar. Das Wissen um die in vivo Dosis von Nanopartikeln im Tierexperiment, das im Verlauf des Projekts zusammengetragen wird, soll diese Fragen neu beleuchten. In diesem Sinne sollen die Ergebnisse helfen, die Aussagekraft vorhandener in vitro Tests zu verbessern. Gegebenenfalls werden im Projekt auch neue in vitro Tests bereitgestellt, die hinsichtlich Zelltyp und Dosis besser auf die in vivo Situation abgestimmt sind. Die interdisziplinäre Arbeit an Zellen und Geweben zusammen mit der physikalisch-chemischen Expertise soll es den Projektpartnern erlauben, dieses 'Dosis-Effekt-Problem' für eine repräsentative Auswahl von Nanopartikeln zu lösen. Mit Hilfe der intensivierten Dunkelfeld-, der Raman-, sowie der Hyperspektral-Mikroskopie sollen partikelhaltige Gewebebereiche zunächst identifiziert werden. Wichtige Ergebnisse werden dabei elektronenmikroskopisch kontrolliert. Eine spezielle Übertragungsmethode soll erarbeitet und etabliert werden, um lichtmikroskopisch aufgefundene Gewebebereiche den bildgebenden Analysemethoden zuzuführen: Mit Hilfe der Ionenstrahl-Mikroskopie (engl. ion beam microscopy, IBM) sollen dabei Elementgehalte hochaufgelöst und quantitativ mittels Protonen-Beschuss bestimmt werden. Die 'time-of-flight'-Massenspektrometrie (ToF-SIMS) kann bereits jetzt Nanopartikel zusammen mit organischen Molekülen nachweisen, doch ist ein weiterer instrumenteller Ausbau der Methode vorgesehen, um ihre Effizienz und Auflösung weiter zu steigern. Die 'laser-ablation-inductively-coupled-mass spectrometry' (LA-ICP-MS) wird ebenfalls weiter optimiert und als quantitatives Nachweisinstrument zusammen mit weiteren Techniken (myXRF) eingesetzt. (Test gekürzt)
Die Klassifizierung von Nanomaterialien, Hilfs- und Arzneistoffen sowie atemwegssensibilisierenden Chemikalien hinsichtlich möglicher inhalationstoxikologischer Effekte stellt einen immer wichtigeren Aspekt im Rahmen einer Sicherheitsbewertung dar. Bisher wird die Sicherheitsevaluierung von Nanomaterialien sowie Hilfs- und Arzneistoffen von in-vivo Verfahren abgeleitet. Zur Erkennung potenzieller Inhalationsallergene werden heute aufgrund der Nichtverfügbarkeit eines spezifischen in-vivo Verfahrens unterschiedliche Tierversuche durchgeführt. Bisherige Anstrengungen zur Entwicklung von Alternativverfahren (3R Prinzip) haben noch keine zufriedenstellenden Verfahren geliefert. Gelingt es, prädiktive Marker und Methoden für die gewählten Stoffgruppen zu finden, wird dies die Zahl der in-vivo Untersuchungen zukünftig reduzieren. Für die betrachteten Stoffgruppen kann der Nachweis einer Entzündungsreaktion und Beeinträchtigung der Epithelbarriere im Alveolarbereich als Indiz für eine Deregulation der Makrophagenaktivierungskaskade mit möglicher systemischer Verfügbarkeit betrachtet werden, was beispielsweise zur Aufnahme durch dendritische Zellen und nachfolgend einer Aktivierung des Immunsystems führt. Im Rahmen von AeroSafe soll eine möglichst einfache Teststrategie für die verschiedenen Stoffgruppen entwickelt werden. Hierfür werden anhand der Evaluierung von fast 30 Stoffen sowohl bekannte Marker als auch neu identifizierte Marker auf ihre in-vivo Aussagekraft und Nutzbarkeit in einer in-chemico/in-vitro Teststrategie untersucht. Konkret werden in AeroSafe neben einem in-chemico Verfahren (P4), 1-Zellsysteme und Co-Kulturmodelle (P1+2) mit steigender Komplexität entwickelt und analysiert (P1-4). Diese Vorgehensweise erlaubt uns die Ermittlung der Modellkomplexität, die für die verschiedenen Stoffgruppen zur frühzeitigen Erkennung von inhalationstoxikologischen Effekten zwingend notwendig ist.
Das Forschungsvorhaben dient der Prävalidierung eines in vitro-Verfahrens, das als Ersatzmethode zum Tierversuch die Risikobeurteilung schwer löslicher, lungengängiger Partikel erlauben soll. Die Validierung und Überführung des Verfahrens in eine OECD-Richtlinie sollen Gegenstand eines Anschlussvorhabens werden. Die experimentellen Arbeiten werden vom IBE R&D gGmbH, der AG Frede (Universitätsklinikum Essen) und der AG Albrecht (IUF Düsseldorf) durchgeführt und in einem gemeinsamen Arbeitsplan beschrieben. Ausgangsbasis ist das bei der IBE R&D gGmbH genutzte Vektorenmodell zur Auswertung biologischer Antworten von Alveolarmakrophagen auf lungengängige Partikel. Als Standard dienen von drei Industriepartnern bereitgestellte Proben. Das vorhandene Vektorenmodell soll durch Verwendung von Zelllinien an den Stand der Wissenschaft angepasst werden. Dazu wird u.a. die Phagozytoseleistung der Zellen, die Zellschädigung und Apoptose, die Produktion von relevanten Signalmolekülen (zahlreiche Interleukine) sowie die Freisetzung von reaktiven Sauerstoffspezies und Stickstoffmonoxid mit aktuellen Methoden erfasst und mit den Werten isolierter Alveolarmakrophagen verglichen. Geeignete Parameter werden in eine Score-Skala zur Gesamtbeurteilung der Toxizität einfließen, deren Aussagekraft mit biometrischen Verfahren abgesichert wird. Die Prävalidierung soll mit einem Ringversuch abgeschlossen werden, der anhand GLP-fähiger Standardvorschriften von den drei o.g. Gruppen durchgeführt wird. Mit dem erweiterten Vektorenmodell will das IBE R&D gGmbH seine Position als Entwickler alternativer Testmethoden stärken. Eine Patentanmeldung sowie einschlägige Publikationen werden in Betracht gezogen. Erträge sollen für den weiteren Aufbau des IBE R&D gGmbH eingesetzt werden. Die Prävalidierung bildet die Grundlage für die Validierung des Verfahrens, das die Anzahl der z.B. im REACH-Prozess geforderten Tierversuche senken soll.
Inhalierte Nanopartikel, die in den Alveolarbereich der Lunge vordringen können, werden dort ganz überwiegend von Alveolarmakrophagen aufgenommen und aus dem Organ heraustransportiert. Ein sehr kleiner Anteil der Nanopartikel kann jedoch auch in andere Zellen der Lunge gelangen oder erreicht periphere Organe und Gewebe, in denen weitere Effekte ausgelöst werden könnten. Um diese Prozesse genauer zu untersuchen, wollen die Partner des Projekts NanoBioDetect Nanopartikel mit State-of-the-Art Methoden in der Lunge und anderen Zielorganen detektieren. Ziel ist es, den Einfluss von Nanopartikeln auf Körperfunktionen noch besser zu verstehen, indem Zelltypen, die Nanopartikel enthalten, zunächst identifiziert und charakterisiert werden. Die pro Zelle enthaltene Partikelmasse soll nach Möglichkeit quantifiziert werden. Weitere Arbeiten werden sich der Detektion veränderter Biomoleküle widmen, zu denen u.a. Protein- oder DNA-Modifikationen gehören. Neben Nanopartikel-haltigen Zellen werden auch Geweberegionen untersucht, in denen Nanopartikel angereichert sind. Obschon Effekte von zumeist hohen Nanopartikelkonzentrationen seit langem für Zellen in vitro beschrieben sind, ist die Übertragbarkeit dieser Resultate auf den komplexen Organismus noch immer unklar. Das Wissen um die in vivo Dosis von Nanopartikeln im Tierexperiment, das im Verlauf des Projekts zusammengetragen wird, soll diese Fragen neu beleuchten. In diesem Sinne sollen die Ergebnisse helfen, die Aussagekraft vorhandener in vitro Tests zu verbessern. Gegebenenfalls werden im Projekt auch neue in vitro Tests bereitgestellt, die hinsichtlich Zelltyp und Dosis besser auf die in vivo Situation abgestimmt sind. Die interdisziplinäre Arbeit an Zellen und Geweben zusammen mit der physikalisch-chemischen Expertise soll es den Projektpartnern erlauben, dieses 'Dosis-Effekt-Problem' für eine repräsentative Auswahl von Nanopartikeln zu lösen. Mit Hilfe der intensivierten Dunkelfeld-, der Raman-, sowie der Hyperspektral-Mikroskopie sollen partikelhaltige Gewebebereiche zunächst identifiziert werden. Wichtige Ergebnisse werden dabei elektronenmikroskopisch kontrolliert. Eine spezielle Übertragungsmethode soll erarbeitet und etabliert werden, um lichtmikroskopisch aufgefundene Gewebebereiche den bildgebenden Analysemethoden zuzuführen: Mit Hilfe der Ionenstrahl-Mikroskopie (engl. ion beam microscopy, IBM) sollen dabei Elementgehalte hochaufgelöst und quantitativ mittels Protonen-Beschuss bestimmt werden. Die 'time-of-flight'-Massenspektrometrie (ToF-SIMS) kann bereits jetzt Nanopartikel zusammen mit organischen Molekülen nachweisen, doch ist ein weiterer instrumenteller Ausbau der Methode vorgesehen, um ihre Effizienz und Auflösung weiter zu steigern. Die 'laser-ablation-inductively-coupled-mass spectrometry' (LA-ICP-MS) wird ebenfalls weiter optimiert und als quantitatives Nachweisinstrument zusammen mit weiteren Techniken (myXRF) eingesetzt. (Test gekürzt)
Ausgehend von vorangegangenen Untersuchungen (Projekt PUG L89003) ueber die Auswirkungen einer Kombination von Schadstoffexposition (Ozon) und Virusinfektion (RSV gleich 'respiratory syncytial virus') auf die pulmonalen Abwehrmechanismen, in denen Veraenderungen von Makrophagen-Funktionen insbesondere bei gleichzeitiger Belastung mit Ozon und Virusinfektion beobachtet wurden, war es die Aufgabe dieser Studie, in einem neuen in vitro Modell die durch bronchoalveolaere Lavage gewonnenen Alveolarmakrophagen (AM) von BALB/c-Maeusen vergleichbaren Belastungen auszusetzen. In der Untersuchung wurden proinflammatorische Cytokine (IL-1, IL-6 und TNF) und die mikrobiziden Eigenschaften der Makrophagen bestimmt. Ferner wurde der Einfluss der Ozonexposition auf die RS-Virusvermehrung in Zellen untersucht. In einer neu entwickelten Ozonexpositionskammer wurden AM von BALB/c-Maeusen im Vergleich zu Reinluft gegenueber 100 ppb (parts per billon) bzw 500 ppb (0,2 bzw 1 mg/m3) Ozon exponiert. In einem ersten Teilbereich wurde der Einfluss der Ozonexposition auf die Funktionalitaet der Makrophagen untersucht, und zwar auf eine moegliche veraenderte Cytokinsekretion und die Mikrobizidie, dh auf die Faehigkeit der Zellen, Mikroorganismen erfolgreich zu vernichten. Die alleinige Ozonexposition reduzierte konzentrationsabhaengig die Produktion des Cytokins IL-6 und die mikrobiziden Eigenschaften der AM. Als weiteres wurde untersucht, ob Ozon einen Einfluss auf die Vermehrungsprozesse des RS-Virus in den Makrophagen hatte. Es konnte festgehalten werden, dass mit zunehmender Ozonkonzentration die Faehigkeit der RS-Viren zunahm, sich in den AM zu vervielfaeltigen. Es wurde geschlossen, dass bei hoeheren Ozonkonzentrationen eine verminderte Produktion an Interferon auftritt, so dass fehlende virostatische Immunmechanismen zu einem Anstieg der Vermehrungsrate an Viren fuehre. Bezueglich der Kombinationswirkung von Ozon und viraler Infektion kam es zu einem Anstieg der Cytokinsekretion im Vergleich zur alleinigen Ozonexposition. Diese Daten verdeutlichen den eine Immunreaktion verstaerkenden Effekt der RSV-Infektion. Unabhaengig davon war jedoch eine konzentrationsabhaengige Suppression durch Ozon zu beobachten. Diese in vitro Untersuchungen zeigen also auf, dass Ozon die Makrophagenfunktionen supprimiert, wobei zudem die Vermehrungsfaehigkeit der RS-Viren in den Ozon-behandelten Makrophagen steigt. Diese Forschungsergebnisse zeigen die Bedeutung von Kombinationseinfluessen von Luftverunreinigungen, die durch photochemische Prozesse entstehen, und einer Virusinfektion des Respirationstraktes. Damit haben sich fruehere Hinweise auf eine Kombinationswirkung von Ozon mit anderen Komponenten, zB Allergenen, bestaetigt. Diese Arbeitsgruppe erzielte bezueglich der Wechselwirkung einer viralen Infektion mit zellulaeren Parametern analoge Ergebnisse zu der Gruppe des Projektes PUG L92001, die ebenso feststellte, dass virale Infekte...
Es wurden an Wistar Ratten (TNO-W-74, SPF) im Ganzkoerperexpositionsverfahren akute, subakute und subchronische Inhalationsstudien, toxikokinetische und reproduktions-toxikologische Versuche sowie inhalative Toxizitaets- und Teratogenitaetsuntersuchungen ueber drei Generationen mit Natriumdichromat-Aerosolen durchgefuehrt. Die Chromwirkungen des Expositionsbereiches von 6-200 My g/m3 Cr wurden z.T. im Vergleich mit Cr(III)chromat-Expositionen anhand zahlreicher klinischer, haematologischer, klinisch-chemischer, biochemischer, immunologischer, pathologischer und Cr-analytischer Verfahren ermittelt. Akut inhalativ war Natriumdichromat weitaus toxischer als akut oral. Nach subakuter bis subchronischer Chromatexposition wurden ausser ausgepraegten Wirkungen auf Alveolarmakrophagen, das Immunsystem und die Lungenreinigungsfunktion keine deutlichen, von der Norm abweichenden Veraenderungen ermittelt. Reproduktions- und Teratogenitaetsschaeden waren nicht nachzuweisen. Bei ganztaegiger Exposition mit Natriumdichromat-Aerosol wird ein no effect level von unter 25 My g/m3 Cr aus dieser Inhalationsstudie mit Wistar-Ratten veranschlagt.
| Origin | Count |
|---|---|
| Bund | 45 |
| Type | Count |
|---|---|
| Förderprogramm | 45 |
| License | Count |
|---|---|
| offen | 45 |
| Language | Count |
|---|---|
| Deutsch | 42 |
| Englisch | 8 |
| Resource type | Count |
|---|---|
| Keine | 31 |
| Webseite | 14 |
| Topic | Count |
|---|---|
| Boden | 34 |
| Lebewesen und Lebensräume | 45 |
| Luft | 38 |
| Mensch und Umwelt | 45 |
| Wasser | 34 |
| Weitere | 45 |