Das Projekt "Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.
Das Projekt "Late-Glacial and Holocene vegetational stability of southern South America" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Göttingen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung für Palynologie und Klimadynamik.This project focuses on the long-term stability (or otherwise) of vegetation, based on a series of multi-proxy records in southern South America. We will build a network of sites suitable for high-resolution reconstructions of changes in vegetation since the Last Glacial Maximum, and use these to test a null hypothesis that changes in vegetation over the past 14,000 years are driven by internal dynamics rather than external forcing factors. The extent to which the null hypothesis can be falsified will reveal the degree to which we can expect to be able to predict how vegetation is affected by external events, including future climate change. The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W; Fontana, Bennett 2012: The Holocene), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites. Climate, dispersal barriers and/or fire disturbance may have played a role controlling the postglacial spread of Nothofagus. Climate change during the Lateglacial and early Holocene was a prerequisite for the expansion of Nothofagus populations and may have controlled it at many sites in Tierra del Fuego. The delayed arrival at the site, with respect to the Holocene warming, may be due to dispersal barriers and/or fire disturbance at eastern sites, reducing the size of the source populations. The retreat of Nothofagus woodland after 9000 cal. yr BP may be due to competitive interactions with bog communities. Volcanic disturbance had a positive influence on the expansion of Pilgerodendron uviferum and facilitated the development of mixed Nothofagus-Pilgerodendron-Drimys woodland.
Das Projekt "ERA-NET SUSAN Projekt: FreeWalk - Entwicklung und Untersuchung von Rinderhaltungssystemen mit freier Liegefläche hinsichtlich Ökonomie, Tierwohl, Tiergesundheit, Umweltwirkung und gesellschaftlicher Akzeptanz" wird/wurde gefördert durch: Bundesministerium für Landwirtschaft, Regionen und Tourismus / Bundesministerium für Nachhaltigkeit und Tourismus. Es wird/wurde ausgeführt durch: Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein (HBLA), Raumberg-Gumpenstein Research and Development.Zielsetzung: Ziel dieses internationalen Forschungsprojektes ist die weitere Entwicklung und Untersuchung von Rinderhaltungssystemen mit freier Liegefläche hinsichtlich Ökonomie, Tierwohl, Umweltwirkung und gesellschaftlicher Akzeptanz. Es werden zwei innovative Haltungssysteme - der Kompoststall und der 'Cow Garden' - mit dem herkömmlichen Liegeboxenlaufstall als Referenzsystem verglichen. Dazu werden Beispielbetriebe in mehreren europäischen Ländern nach einem ganzheitlichen Ansatz beurteilt. Das Projekt-Konsortium besteht aus 11 Partnern aus ganz Europa, Amerika und Israel. Die HBLFA Raumberg-Gumpenstein hat bereits in vorangegangenen Forschungsaktivitäten die Haltungsbedingungen auf österreichischen Kompoststallbetrieben untersucht und wird hier auf internationaler Ebene zu einer Zusammenschau verschiedener Fachdisziplinen beitragen.
Gebietsfremde Arten (Neobiota) kommen in Städten wie Berlin häufig vor. Da es in der Natur kein “Gut” und “Böse” gibt, sind auch diese neu eingebürgerten Arten nicht per se schlecht. Je nachdem, wo sie vorkommen und wie sie sich ausbreiten, können einige Arten jedoch zu Problemen mit dem Naturschutz führen. Dazu können Neobiota auch einen erheblichen wirtschaftlichen Schaden in der Landwirtschaft und beim Hochwasserschutz anrichten. Unter allen Tier- und Pflanzenarten an einem festgelegten Ort unterscheidet man zwischen einheimischen (indigenen) und gebietsfremden Arten. Einheimische Arten kommen dort von Natur aus vor oder sind von selbst eingewandert. Gebietsfremde Arten wurden dagegen von Menschen eingeführt. Oft mit Absicht (wie bei der Einfuhr von Kartoffeln), manchmal aber auch unfreiwillig, wie z.B. der Klatschmohn, der sich mit der Landwirtschaft auf der ganzen Welt verbreitet hat. In Mitteleuropa begann die Verbreitung gebietsfremder Arten durch den Menschen bereits in der Jungsteinzeit mit Beginn des Ackerbaus. Mit der Zunahme des Handels und des Verkehrs nach der Entdeckung Amerikas durch die Europäer im Jahr 1492 beschleunigte sich dieser Prozess noch einmal deutlich. Alle vom Menschen vor 1492 eingeführten Arten nennt man daher Archäobiota (frei übersetzt: “alte Arten”) und alle danach eingeführten Neobiota (frei übersetzt: “neue Arten”). Bei den neu eingeführten Arten gibt es viele, die nur gelegentlich und vereinzelt auftauchen und solche, die sich auch ohne Hilfe des Menschen fest etabliert haben. Dieses gelingt zumeist nur den Arten, die aus Regionen mit ähnlichem Klima wie bei uns stammen. Zum Problem werden diese Arten erst dann, wenn sie anfangen, den einheimischen Arten den Platz und die Ressourcen streitig zu machen, oder diese gar verdrängen. Beispielsweise sind manche Pflanzenarten so konkurrenzstark, dass sie nahezu alles überwuchern können, was in ihrer Umgebung lebt und wächst. Diese Arten werden als invasiv bezeichnet. Die Beseitigung oder Bekämpfung dieser invasiven Arten ist oft sehr aufwendig und dazu noch kostspielig. Die Europäische Kommission hat deshalb im Jahr 2016 eine Verordnung zur Bekämpfung bestimmter invasiver Arten von europäischer Bedeutung erlassen. Darunter fallen für die Neophyten z.B. die Wechselblatt-Wasserpest und Gelbe Scheincalla und für Neozoen z.B. der Waschbär und die Chinesische Wollhandkrabbe. Neophyten können jedoch auch eine besondere Bedeutung für die heimische Tierwelt haben. So ist z.B. die aus Nordamerika stammende Gewöhnliche Schneebeere (Symphoricarpos albus), die viele als sogenannten “Knallerbsenstrauch” kennen, bei den Raupen des Kleinen Eisvogels, einem Falter, der auf dem Kienberg lebt, als Nahrung sehr beliebt. Die Robinien am Kienberg sind beispielsweise für Bienen eine gern genutzte Nahrungsquelle. Der Kienberg wurde in den Jahren 1973 bis 1984 beim Bau der umliegenden Großsiedlungen künstlich auf 102 Meter aufgeschüttet und im Anschluss zum Schutz vor Erosion vor allem mit neophytischen Gehölzarten bepflanzt. Diese Gehölze waren zum damaligen Zeitpunkt leicht verfügbar und wuchsen besonders schnell und üppig. Noch heute ist der Kienberg deshalb zum größten Teil mit Neophyten bewachsen. Die Art, die sich am Kienberg am stärksten ausbreitet, ist der Eschen-Ahorn. Er bildet dichte Bestände, in denen kaum eine weitere Pflanzenart existieren kann. Sowohl der Eschen-Ahorn als auch die Robinie zählen zu den invasiven Arten. Beide Arten wirken sich am Kienberg jedoch unterschiedlich auf die Tier- und Pflanzenarten aus. Vorkommen Der Eschen-Ahorn beansprucht inzwischen große Flächen des Kienbergs für sich und wächst dort sehr dicht. Außerdem verbreitet er sich bereits in Richtung Wuhletal. Auswirkungen Der Eschen-Ahorn wächst so schnell und mit großer Blattmasse, dass die für viele Arten wichtigen lichten Lebensräume verlorengehen. Dadurch verringert sich die Artenvielfalt in diesen Naturräumen. Insbesondere an den Kienbergterrassen wurden zur Internationalen Gartenausstellung 2017 die mit Eschen-Ahorn bewachsenen Waldränder zurückgenommen und anstelle dessen schnell wachsende, heimische Gehölzarten gepflanzt. In Verbindung mit einer regelmäßigen und kontinuierlichen Pflege kann so einer weiteren Ausbreitung des Eschen-Ahorns entgegengewirkt werden. Vorkommen Auch die Robinie hat mehrere Standorte an den Hängen des Kienbergs bestockt, ist aber auch schon vereinzelt bis in das Wuhletal vorgedrungen. Auswirkungen Außer dem Schwarzen Holunder und etwas Spitz-Ahorn wächst am Kienberg kaum etwas neben oder unter der Robinie. Sie verändert die Zusammensetzung des Artenspektrums in ihrer Umgebung dauerhaft, da sie den Boden mit Stickstoff anreichert. Gleichzeitig ist die Robinie aber auch eine wichtige Nahrungsquelle für die Honigbienen. Im Frühsommer bildet sie einen besonders reichhaltigen Nektar mit hohem Zuckeranteil. Aus diesem Grund ist sie bei Imkern als Bienenweide sehr beliebt. Da die Vorteile der Robinie auf dem Kienberg überwiegen und sie sich auch nicht übermäßig verbreitet, wird sie zunächst noch in Ruhe gelassen und nicht wie der Eschen-Ahorn aktiv zurück gedrängt. Sterben Robinien ab oder müssen aus Bruchgefahr entfernt werden, können diese Standorte mit gebietsheimischen Gehölzen wieder gefüllt werden. Bitte verzichten Sie darauf, invasive Arten wie z.B. Riesenbärenklau, Indisches Springkraut oder Japanischen Staudenknöterich im Garten anzupflanzen. Besonders häufig gelangen diese Arten über Gartenabfälle in die Natur. Bitte entsorgen Sie deshalb Ihren Gartenabfall und Blumenschnitt ordnungsgemäß bei der Berliner Stadtreinigung. Durch diese kleinen Maßnahmen kann eine weitere Verbreitung dieser invasiven Arten vermieden werden. Invasive Tier- und Pflanzenarten in Berlin Neobiota [Bundesamt für Naturschutz
Das Projekt "Entwicklung vollständig Reblaus resistenter Unterlagssorten mit hoher Standortanpassungsfähigkeit" wird/wurde ausgeführt durch: Hochschule Geisenheim University, Zentrum Angewandte Biologie, Institut für Rebenzüchtung und Rebenveredlung.Die Reblaus (Dactulosphaira vitifoliae) ist der gefährlichste Schädling im Weinbau. Seine Einschleppung aus Amerika in der zweiten Hälfte des 19. Jahrhunderts führte in ganz Europa und insbesondere in Frankreich zu dramatischen Schäden. Erst durch die Entwicklung toleranter amerikanischer Unterlagen konnte das Problem gelöst werden. Die Toleranz aller bisherigen Unterlagen beruht auf dem gleichen Prinzip, einer gegenüber den Europäerreben (Vitis vinifera) anderen Wurzelmorphologie. Vollständige Resistenzen sind aus zwei Arten bekannt: Muscadinia rotundifolia und Vitis cinerea. M. rotundifolia ist aufgrund einer anderen Chromosomenzahl züchterisch schwierig zu nutzen, während V. cinerea mit allen Vitis Arten kreuzbar ist. Die Arbeiten sind daher auf V. cinerea ausgerichtet. Erste Erfolge sind die Sorte Börner, die weltweit erste vollständig Reblaus resistente Rebunterlage. Sie bringt gute Ergebnisse z.B. an trockenen Steillagen, allerdings nicht an feuchten Standorten. Wegen der sehr verschiedenen Boden- und Standortbedingungen sind weitere Unterlagen dieses Typs erforderlich. Neben ihrem Verhalten gegen Reblaus werden die Zuchtstämme in Freilandversuchen auf ihre Standortanpassung geprüft.
Die Notwendigkeit Energie einzusparen, betrifft ganz Deutschland und Europa. Um einen Beitrag zu leisten und ein sichtbares Zeichen zu setzen, hat die Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz damit begonnen, die Anstrahlung von Gebäuden und Wahrzeichen in ihrer Verantwortung abzuschalten. Senatorin Bettina Jarasch: „Angesichts des Krieges gegen die Ukraine und der energiepolitischen Drohungen Russlands ist es wichtig, dass wir möglichst sorgsam mit unserer Energie umgehen. Das gilt auch und gerade für die öffentliche Hand. Deshalb werden wir die in unserer Verantwortung stehenden Gebäude Berlins nicht mehr anstrahlen. Das ist aus unserer Sicht in dieser Situation gut vertretbar, auch um einen sichtbaren Beitrag zu leisten.“ In der Zuständigkeit der Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz werden derzeit insgesamt rund 200 Objekte im Land Berlin angestrahlt. Für diese Anstrahlungsobjekte sind ca. 1400 Strahler an Beleuchtungsmasten im Einsatz. Folgende bedeutende Bauwerke zählen dazu: Siegessäule, Staatsoper, Deutsche Oper, Zeughaus, Gedächtniskirche, Berliner Dom, Rotes Rathaus, Elefantentor und Eingang Zoo, Jüdisches Museum, Ruine Anhalter Bahnhof, Amerika Gedenkbibliothek, Schloss Charlottenburg, Charlottenburger Tor. Zudem werden weitere Kirchen (u.a. Nikolaikirche, St. Marien), Statuen (u.a. Reiterstandbild Unter den Linden; Statuen von Bismarck, Moltke und Wagner im Tiergarten) und auch Brückenbauwerke erstmal nicht mehr angestrahlt. Der Anschlusswert aller Anstrahlungen beträgt ca. 100.000 W, der Stromverbrauch liegt bei ca. 200.000 kWh/Jahr, die Stromkosten belaufen sich auf ca. 40.000 € pro Jahr. Aufgrund der einmaligen Kosten voraussichtlich in ähnlicher Höhe für die manuelle Abschaltung der einzelnen Strahler ist kurzfristig der nennenswerte Energiespar-Effekt entscheidend für die Maßnahme, nicht die reine Wirtschaftlichkeit, die in dieser Situation schwer kalkulierbar ist. Eine rahmenvertraglich gebundene Elektrofachfirma mit spezieller Sachkunde und Ortskenntnis der Öffentlichen Beleuchtungsanlagen wurde aufgefordert, sofort mit den Vorbereitungen für das Ausschalten der Anstrahlungen zu beginnen. Es werden drei Abfahrkolonnen gebildet, die täglich ca. 100 – 120 Strahler außer Betrieb setzen. Dies erfolgt durch Abklemmen der Strahler in der Mastklappe. Eine Demontage der Strahler erfolgt nicht. Das Ausschalten aller Anstrahlungen sollte somit in 3 – 4 Wochen abgeschlossen sein. Der Prozess wird eng durch Mitarbeitende des Fachbereichs Öffentliche Beleuchtung begleitet, um eine ordnungsgemäße Arbeitsvorbereitung und Dokumentation sicherzustellen. Der Ablauf der Arbeiten wurde priorisiert, so dass mit dem Ausschalten im Stadtzentrum begonnen wird und anschließend die Außenbereiche angefahren werden.
Das Projekt "H2020-EU.3.5. - Societal Challenges - Climate action, Environment, Resource Efficiency and Raw Materials - (H2020-EU.3.5. - Gesellschaftliche Herausforderungen - Klimaschutz, Umwelt, Ressourceneffizienz und Rohstoffe), Co-designing Locally tailored Ecological solutions for Value added, socially inclusivE Regeneration in Cities (CLEVER Cities)" wird/wurde ausgeführt durch: Freie und Hansestadt Hamburg.
Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz Im August 1945 wurden in der Endphase des Zweiten Weltkrieges zum ersten und einzigen Mal Atomwaffen in einem militärischen Konflikt eingesetzt. Die erste von zwei amerikanischen Atombomben wurde am 6. August über der japanischen Stadt Hiroshima abgeworfen. Der zweite Bombenangriff auf die Stadt Nagasaki erfolgte drei Tage später. Das heutige Wissen über die gesundheitlichen Risiken ionisierender Strahlung basiert überwiegend auf den Beobachtungen an den Überlebenden der Atombombenabwürfe. Insbesondere auf den Ergebnissen der sogenannten Life Span Study, einer epidemiologischen Kohortenstudie an den Atombombenüberlebenden. Die Studienergebnisse bilden eine wichtige Grundlage für den Strahlenschutz, insbesondere für die Festlegung von Grenzwerten. Auch in Zukunft sind wichtige Erkenntnisse aus dieser Studie zu erwarten. Historie Atombombenabwürfe: Auswirkungen Historie Friedensdenkmal in Hiroshima: Gedenkstätte für den ersten kriegerischen Einsatz einer Atombombe Während des Pazifikkriegs zwischen Japan und China beschloss die amerikanische Regierung, den Export von Erdöl und Stahl nach Japan einzuschränken, um die Kriegsausweitung nach Südostasien zu verhindern. Dieses wirtschaftliche Embargo führte am 7. Dezember 1941 zum japanischen Angriff auf Pearl Harbor und zur Ausweitung des Pazifikkrieges auf Amerika. Die USA begannen daraufhin im Jahr 1942 mit der Entwicklung und dem Bau der Atombombe ("Manhattan Project"), die im Juli 1945 in Los Alamos erfolgreich getestet wurde ("Trinity Test"). Nach fast vier Jahren andauernder Kriegsführung und der Ablehnung eines Kapitulationsultimatums seitens Japans bat die US-Militärführung um die Erlaubnis für den Einsatz der Atombombe. Obwohl viele an der Entwicklung beteiligte Wissenschaftler davon abrieten, wurde 1945 beschlossen, die Atombombe einzusetzen. Als Ziel für den Abwurf am 6. August wurde Hiroshima gewählt. Es war Sitz des Hauptquartiers der 2. Hauptarmee Japans und diente gleichzeitig zur Lagerung kriegswichtiger Güter. Zudem befand sich dort kein Kriegsgefangenenlager (mit US-Insassen). Als Ziel für den Abwurf der zweiten Atombombe am 9. August war ursprünglich die für die Rüstungsindustrie wichtige Stadt Kokura vorgesehen. Wegen schlechter Sicht wurde jedoch Nagasaki angeflogen, das Sitz des Rüstungskonzerns Mitsubishi war. Atombombenabwürfe: Auswirkungen Durch die Druck- und Hitzewellen (von mindestens 6.000 °C ) waren Sekunden nach den Abwürfen 80% der Innenstädte völlig zerstört. Die daraufhin aufsteigenden Atompilze bestanden aus aufgewirbeltem Staub und Asche, an die sich radioaktive Teilchen anhefteten. Diese Staubwolke ging ca. 20 Minuten später als radioaktiver Niederschlag (sogenannter Fall-out ) auf die Umgebung nieder. Die Opfer der Atombombenabwürfe kamen zum einen unmittelbar durch die Explosion ums Leben, zum anderen verstarben sie an den Akut- und Spätschäden der ionisierenden Strahlung. Eine eindeutige Unterscheidung der Todesursachen nach Verbrennungen, Verletzungen oder Strahlung war unmöglich, da auch die Druck- und Hitzewellen eine Rolle spielten. Da alle wichtigen Aufzeichnungen und Register in den Städten zerstört wurden, ist die genaue Anzahl der durch die Explosion Getöteten bis heute unklar. Nach Schätzungen starben in Hiroshima bis zu 80.000 und in Nagasaki bis zu 40.000 Menschen direkt, ebenso viele wurden verletzt. Abschätzung der Einwohnerzahl sowie der akuten Todesfälle in beiden Städten zum Zeitpunkt des Abwurfes bis 4 Monate danach Stadt Geschätzte Einwohnerzahl zum Zeitpunkt der Abwürfe Geschätzte Anzahl akuter Todesfälle Hiroshima 340.000 bis 350.000 90.000 bis 166.000 Nagasaki 250.000 bis 270.000 60.000 bis 80.000 Quelle: www.rerf.jp Die Anzahl der Überlebenden, die ionisierender Strahlung ausgesetzt waren, wurde in einem Zensus der japanischen Regierung auf etwa 280.000 Personen geschätzt. Als Maß für die Strahlenbelastung der Überlebenden verwendet die Radiation Effects Research Foundation (RERF) die mittlere, gewichtete Strahlendosis des Darms (Gewichtung: Gamma- Dosis des Darms + 10*Neutronen- Dosis des Darms). Diese hängt vom Aufenthaltsort zum Zeitpunkt der Explosion ab und steigt mit der Nähe zum Zentrum der Explosion (dem sogenannten Hypozentrum) stark an. Schätzung der mittleren gewichteten Strahlendosis der Überlebenden in Abhängigkeit von der Distanz zum Hypozentrum in beiden Städten Gewichtete Strahlendosis des Darms in Gray ( Gy ) Distanz Hypozentrum Hiroshima Distanz Hypozentrum Nagasaki 0,005 Gy 2.500 m 2.700 m 0,05 Gy 1.900 m 2.050 m 0,1 Gy 1.700 m 1.850 m 0,5 Gy 1.250 m 1.450 m 1 Gy 1.100 m 1.250 m Quelle: www.rerf.jp Epidemiologische Studien Um die Effekte von ionisierender Strahlung auf den Menschen zu erforschen, wurde 1950 eine Kohortenstudie ( Life Span Study ) begonnen, in die ca. 120.000 Überlebende einbezogen wurden. Zudem wurden mit Teilen dieser Kohorte folgende kleinere Kohortenstudien durchgeführt: eine Studie mit 20.000 Teilnehmenden, die regelmäßig körperlichen Untersuchungen unterzogen werden ( The Adult Health Survey ) eine Studie mit 77.000 Nachkommen von Überlebenden (F1-Studie) eine Studie mit 3.600 Teilnehmenden, die der ionisierenden Strahlung vor ihrer Geburt (in utero) ausgesetzt waren (In-utero study ) sowie eine Studie, in der anhand von 1.703 vorhandenen Blutproben von Überlebenden genetische Veränderungen erforscht werden. Die Life Span Study hat wegen ihrer großen Studienpopulation, einer relativ präzisen individuellen Dosisabschätzung, einem langen Beobachtungszeitraum und der Beobachtung zahlreicher Krankheiten eine große Bedeutung für die Erforschung der gesundheitlichen Auswirkungen ionisierender Strahlung . Im Jahr 2009 waren insgesamt ca. 38 % der Studienpopulation noch am Leben (Altersdurchschnitt 78 Jahre). Von denen, die zum Zeitpunkt der Abwürfe unter 10 Jahre alt waren, lebten im Jahr 2009 noch ca. 83 % . 2 Akute Strahlenschäden (deterministische Strahlenwirkungen) Unmittelbar nach den Atombombenabwürfen erlitten die Betroffenen akute Strahlenschäden, sogenannte deterministische Strahlenwirkungen . Dabei handelt es sich um Gewebereaktionen, die durch das massive Absterben von Zellen verursacht werden und erst oberhalb einer Schwellendosis auftreten. Zu den deterministischen Strahlenwirkungen gehören beispielsweise die akute Strahlenkrankheit und Fehlbildungen nach Bestrahlung in-utero. Spätschäden (stochastische Strahlenwirkungen) Jahre bis Jahrzehnte nach den Atombombenabwürfen traten bei den Überlebenden Spätschäden, sogenannte stochastische Strahlenwirkungen (wie z.B. Krebs, Leukämien und genetische Wirkungen ), auf. Diese können auch von Strahlendosen verursacht werden, die unterhalb der Schwelle für deterministische Strahlenwirkungen liegen. Sie resultieren aus DNA -Mutationen (Schädigungen der Erbsubstanz der Zellen), die Krebs oder Leukämien auslösen können und die erst nach Jahren als klinisches Krankheitsbild in Erscheinung treten. Mutationen in den Keimzellen können in den nachfolgenden Generationen Fehlbildungen oder Erbkrankheiten zur Folge haben. In den epidemiologischen Studien werden diese stochastischen Strahlenwirkungen untersucht. Bedeutung für den Strahlenschutz Die Daten aus verschiedenen epidemiologischen Studien werden von nationalen und internationalen wissenschaftlichen Gremien, wie der japanisch-amerikanischen Radiation Effects Research Foundation (RERF), ausgewertet und spielen eine wichtige Rolle für die Bewertung des Strahlenrisikos, z. B. durch das wissenschaftliche Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen ( UNSCEAR ) und auch durch die deutsche Strahlenschutzkommission ( SSK ). Die Ergebnisse der Life Span Study , der größten Studie an Atombombenüberlebenden, bilden eine wichtige Grundlage für die Abschätzung strahlenbedingter Risiken und die Ableitung von Grenzwerten für Strahlenbelastungen und Strahlenschutzregelungen. Da die Atombombenüberlebenden jedoch einer hohen akuten Strahlenexposition ausgesetzt waren, ist die Abschätzung der Risiken durch niedrige oder chronische Strahlenexpositionen (wie sie heute eher relevant sind) aufgrund dieser Daten schwierig und wird bis heute kontrovers diskutiert. Die Aussagekraft der Life Span Study steigt mit zunehmender Beobachtungsdauer und es ist mit einer noch genaueren Beschreibung der Dosis-Wirkungs-Beziehung zu rechnen ( z. B. hinsichtlich Alters- und Geschlechtsunterschieden bei der Wirkung ionisierender Strahlung ). Literatur 1 Hsu, W. L., D. L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, M. Iwanaga, Y. Miyazaki, H. M. Cullings, A. Suyama, K. Ozasa, R. E. Shore and K. Mabuchi (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors : 1950-2001 . Radiat Res 179(3): 361-382. 2 Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchid and K. Ozasa (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat Res 187(5): 513-537. 3 Preston, D. L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi and K. Kodama (2007). Solid cancer incidence in atomic bomb survivors: 1958-1998 . Radiat Res 168(1): 1-64. 4 Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama and K. Kodama (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases . Radiat Res 177(3): 229-243. Stand: 01.08.2023
Berichtsjahr: 2022 Adresse: Klein Amerika 1 29649 Wietzendorf Bundesland: Niedersachsen Flusseinzugsgebiet: Weser Betreiber: Emsland-Stärke GmbH Haupttätigkeit: Herstellung v. Nahrungsmitteln/Getränkeprodukten aus pflanzlichen Rohstoffen > 300 t/d
Das Projekt "H2020-EU.3.5. - Societal Challenges - Climate action, Environment, Resource Efficiency and Raw Materials - (H2020-EU.3.5. - Gesellschaftliche Herausforderungen - Klimaschutz, Umwelt, Ressourceneffizienz und Rohstoffe), Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments (GROW GREEN)" wird/wurde ausgeführt durch: Manchester City Council.
Origin | Count |
---|---|
Bund | 135 |
Land | 34 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 107 |
Taxon | 5 |
Text | 46 |
Umweltprüfung | 2 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 52 |
offen | 113 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 109 |
Englisch | 81 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 1 |
Datei | 9 |
Dokument | 12 |
Keine | 119 |
Webseite | 39 |
Topic | Count |
---|---|
Boden | 103 |
Lebewesen & Lebensräume | 142 |
Luft | 86 |
Mensch & Umwelt | 163 |
Wasser | 82 |
Weitere | 169 |