API src

Found 1623 results.

Related terms

Trinkwasseranalyse der Stadtwerke Münster

<p>Dieser Datensatz beinhaltet die Durchschnitts-Meßwerte der Trinkwasseranalyse der Stadtwerke Münster.<br /> Aktuell sind darin folgende Parameter enthalten:</p> <pre>Mikrobiologische Parameter (TrinkwV - Anlage 1: Teil I) Enterokokken Escherichia coli Chemische Parameter, deren Konzentration sich im Verteilungsnetz einschließlich der Trinkwasser-Installation in der Regel nicht mehr erhöht (TrinkwV - Anlage 2: Teil I) 1,2-Dichlorethan Benzol Bor (B) Bromat Chrom (Cr), ges. Cyanid (Cn), ges. Fluorid (F) Microcystin-LR Nitrat (NO3) Quecksilber (Hg), ges. Selen (Se) Summe PFAS-20 Summe PFAS-4 Tetrachlorethen Trichlorethen Uran (U) Chemische Parameter, deren Konzentration im Verteilungsnetz einschließlich der Trinkwasser-Installation ansteigen kann (TrinkwV - Anlage 2: Teil II) Antimon (Sb), ges. Arsen (As) Benzo(a)pyren Bisphenol A Blei (Pb) Cadmium (Cd) Kupfer (Cu), ges. Nickel (Ni) Nitrit (N02) Allgemeine Indikatorparameter (TrinkwV - Anlage 3) Aluminium (Al), ges. Ammonium (NH4) Calcitlösekapazität Calcitabscheidekapazität Chlorid (Cl) Clostridium perfringens Coliforme Bakterien Eisen (Fe), ges. Geruch, qualitativ Geschmack, qualitativ Koloniezahl bei 22 °C Koloniezahl bei 36 °C Leitfähigkeit, elektr. bei 25 °C Mangan (Mn), ges. Natrium (Na) pH-Wert SAK 436 nm, Färbung Sulfat (SO4) TOC Trübung, quantitativ (FNU) Wasserhärte und Härtebildner Gesamthärte Härte Härtebereich Calcium (Ca) Magnesium (Mg) Kalium (K) Karbonathärte Säurekapazität bis pH 4,3</pre> <p>Bitte beachten Sie: In den Jahren vor 2023 wurden weniger Parameter erfasst.</p> <p>Sie können die jährlichen Durchschnittsmesswerte der vergangenen Jahre jeweils als PDF oder als Excel-Datei herunterladen. In den PDF-Dateien sind zusätzlich zu den gemessenen Mittelwerten auch die zugehörigen Grenz- bzw. Richtwerte enthalten.</p> <p><strong>Informationen zur Einspeisung</strong><br /> <em>Wie finde ich heraus, welches Wasser aus meinem Wasserhahn kommt?</em><br /> Nicht in allen Gebieten gibt es dafür eine eindeutige Zuordnung.<br /> Je weiter Ihr Haushalt von der Einspeisung entfernt ist,&nbsp; desto mehr bekommen Sie „Mischwasser“ aus mehreren Quellen. Dabei kann man das aufgrund des Leitungsverlaufs nicht immer anhand der Entfernung oder anhand von Straßen ausmachen.</p> <p>Ganz grob lässt sich sagen:</p> <ul> <li>Nördliches Stadtgebiet: Einspeisung Hornheide und Kinderhaus</li> <li>Südliches Stadtgebiet: Einspeisung Hohe Ward und Geist</li> <li>Innenstadt: gemischt</li> </ul> <p><a href="https://opendata.stadt-muenster.de/dataset/trinkwasseranalyse-der-stadtwerke-m%C3%BCnster/resource/cc81e0b5-b848-44d2-8a5a-f9676e799ebc">Eine grafische Darstellung dazu erhalten Sie in der hier verlinkten Bilddatei</a></p>

Trinkwasseranalyse der Stadtwerke Münster

<p>Dieser Datensatz beinhaltet die Durchschnitts-Meßwerte der Trinkwasseranalyse der Stadtwerke Münster.<br /> Aktuell sind darin folgende Parameter enthalten:</p> <pre>Mikrobiologische Parameter (TrinkwV - Anlage 1: Teil I) Enterokokken Escherichia coli Chemische Parameter, deren Konzentration sich im Verteilungsnetz einschließlich der Trinkwasser-Installation in der Regel nicht mehr erhöht (TrinkwV - Anlage 2: Teil I) 1,2-Dichlorethan Benzol Bor (B) Bromat Chrom (Cr), ges. Cyanid (Cn), ges. Fluorid (F) Microcystin-LR Nitrat (NO3) Quecksilber (Hg), ges. Selen (Se) Summe PFAS-20 Summe PFAS-4 Tetrachlorethen Trichlorethen Uran (U) Chemische Parameter, deren Konzentration im Verteilungsnetz einschließlich der Trinkwasser-Installation ansteigen kann (TrinkwV - Anlage 2: Teil II) Antimon (Sb), ges. Arsen (As) Benzo(a)pyren Bisphenol A Blei (Pb) Cadmium (Cd) Kupfer (Cu), ges. Nickel (Ni) Nitrit (N02) Allgemeine Indikatorparameter (TrinkwV - Anlage 3) Aluminium (Al), ges. Ammonium (NH4) Calcitlösekapazität Calcitabscheidekapazität Chlorid (Cl) Clostridium perfringens Coliforme Bakterien Eisen (Fe), ges. Geruch, qualitativ Geschmack, qualitativ Koloniezahl bei 22 °C Koloniezahl bei 36 °C Leitfähigkeit, elektr. bei 25 °C Mangan (Mn), ges. Natrium (Na) pH-Wert SAK 436 nm, Färbung Sulfat (SO4) TOC Trübung, quantitativ (FNU) Wasserhärte und Härtebildner Gesamthärte Härte Härtebereich Calcium (Ca) Magnesium (Mg) Kalium (K) Karbonathärte Säurekapazität bis pH 4,3</pre> <p>Bitte beachten Sie: In den Jahren vor 2023 wurden weniger Parameter erfasst.</p> <p>Sie können die jährlichen Durchschnittsmesswerte der vergangenen Jahre jeweils als PDF oder als Excel-Datei herunterladen. In den PDF-Dateien sind zusätzlich zu den gemessenen Mittelwerten auch die zugehörigen Grenz- bzw. Richtwerte enthalten.</p> <p><strong>Informationen zur Einspeisung</strong><br /> <em>Wie finde ich heraus, welches Wasser aus meinem Wasserhahn kommt?</em><br /> Nicht in allen Gebieten gibt es dafür eine eindeutige Zuordnung.<br /> Je weiter Ihr Haushalt von der Einspeisung entfernt ist,&nbsp; desto mehr bekommen Sie „Mischwasser“ aus mehreren Quellen. Dabei kann man das aufgrund des Leitungsverlaufs nicht immer anhand der Entfernung oder anhand von Straßen ausmachen.</p> <p>Ganz grob lässt sich sagen:</p> <ul> <li>Nördliches Stadtgebiet: Einspeisung Hornheide und Kinderhaus</li> <li>Südliches Stadtgebiet: Einspeisung Hohe Ward und Geist</li> <li>Innenstadt: gemischt</li> </ul> <p><a href="https://opendata.stadt-muenster.de/dataset/trinkwasseranalyse-der-stadtwerke-m%C3%BCnster/resource/cc81e0b5-b848-44d2-8a5a-f9676e799ebc">Eine grafische Darstellung dazu erhalten Sie in der hier verlinkten Bilddatei</a></p>

Gewässergüte (Chemie) 2001

Temperatur (02.01.2) Die Temperatur ist eine bedeutende Einflussgröße für alle natürlichen Vorgänge in einem Gewässer. Biologische, chemische und physikalische Vorgänge im Wasser sind temperaturabhängig , z.B. Zehrungs- und Produktionsprozesse, desgleichen Adsorption und Löslichkeit für gasförmige, flüssige und feste Substanzen. Dies gilt auch für Wechselwirkungen zwischen Wasser und Untergrund oder Schwebstoffen und Sedimenten sowie zwischen Wasser und Atmosphäre. Die Lebensfähigkeit und Lebensaktivität der Wasserorganismen sind ebenso an bestimmte Temperaturgrenzen oder -optima gebunden wie das Vorkommen unterschiedlich angepasster Organismenarten und Fischbesiedelungen nach Flussregionen in Mitteleuropa. Die Darstellung der Heizkraftwerke in der Karte sowie deren Einfluss auf die Gewässertemperatur sind bei der Betrachtung zu berücksichtigen. Aus der Temperaturverteilungskarte wird deutlich sichtbar, dass die Wärmeeinleitungen in die Berliner Gewässer in den letzten Jahren rückläufig war, vor allem im Bereich der Spreemündung und der Havel. Die kritische Schwelle von 28° C wurde nicht überschritten, die Maxima bzw. 95-Perzentile liegen im Bereich um 25° C. Ende der neunziger Jahre wurden sporadisch noch Temperaturen über 28° C gemessen. Der Rückgang der Wärmefrachten der Berliner Kraftwerke in die Gewässer beträgt seit 1993 ca. 13 Mio. GJ und ist im Wesentlichen auf den Anschluss des Berliner Stromnetzes an das westeuropäische Verbundnetz zurückzuführen. Durch die Liberalisierung des Strommarktes bedingte sinkende Strombeschaffungskosten und damit verbundene geringere Erzeugung in den Berliner Kraftwerken hat zur Stilllegung bzw. Teilstilllegung von Kraftwerken geführt, die zum Teil mit Modernisierungen zur Effizienzsteigerung verbunden waren. Die derzeitige Wärmefracht beträgt ca. 10 Mio. GJ. Sauerstoffgehalt (02.01.1) Der Sauerstoffgehalt des Wassers ist das Ergebnis sauerstoffliefernder und -zehrender Vorgänge . Sauerstoff wird aus der Atmosphäre eingetragen, wobei die Sauerstoffaufnahme vor allem von der Größe der Wasseroberfläche, der Wassertemperatur, dem Sättigungsdefizit, der Wasserturbulenz sowie der Luftbewegung abhängt. Sauerstoff wird auch bei der Photosynthese der Wasserpflanzen freigesetzt, wodurch Sauerstoffübersättigungen auftreten können. Beim natürlichen Abbau organischer Stoffe im Wasser durch Mikroorganismen sowie durch die Atmung von Tieren und Pflanzen wird Sauerstoff verbraucht . Dies kann zu Sauerstoffmangel im Gewässer führen. Der kritische Wert liegt bei 4 mg/l, unterhalb dessen empfindliche Fischarten geschädigt werden können. Sowohl aus den Werten der Messstationen als auch aus den Stichproben ist eine Verbesserung des Sauerstoffgehaltes der Berliner Gewässer nur teilweise ablesbar. Kritisch sind nach wie vor die Gewässer, in die Mischwasserüberläufe stattfinden. In der Mischwasserkanalisation werden Regenwasser und Schmutzwasser in einem Kanal gesammelt und über Pumpwerke zu den Klärwerken gefördert. Dieses Entwässerungssystem ist in der gesamten Innenstadt Berlins präsent. (vgl. Karte 02.09) Im Starkregenfall reicht die Aufnahmekapazität der Mischkanalisation nicht aus und das Gemisch aus Regenwasser und unbehandeltem Abwasser tritt in Spree und Havel über. Infolge dessen kann es durch Zehrungsprozesse zu Sauerstoffdefiziten kommen. Besonders extreme Ereignisse lösen in einigen Gewässerabschnitten (v.a. Landwehrkanal und Neuköllner Schifffahrtskanal) sogar Fischsterben aus. Um die Überlaufmengen künftig deutlich zu verringern, werden im Rahmen eines umfassenden Sanierungsprogramms zusätzliche unterirdische Speicherräume aktiviert bzw. neu errichtet. Die kritischen Situationen im Tegel Fließ sind auf nachklingende Rieselfeldeinflüsse bzw. Landwirtschaft zurückzuführen. TOC (02.01.10) und AOX (02.01.7) Die gesamtorganische Belastung in Oberflächengewässern wird mit Hilfe des Leitparameters TOC (total organic carbon) ermittelt. Die Summe der “Adsorbierbaren organisch gebundenen Halogene” wird über die AOX -Bestimmung wiedergegeben. Bei der Bestimmung des Summenparameters AOX werden die Halogene (AOJ, AOCl, AOBr) in einer Vielfalt von Stoffen mit ganz unterschiedlichen Eigenschaften erfasst. Dieser Parameter dient insofern weniger der ökotoxikologischen Gewässerbewertung, sondern vielmehr in der Gewässerüberwachung dem Erfolgsmonitoring von Maßnahmen zur Reduzierung des Eintrags an “Adsorbierbaren organisch gebundenen Halogenen”. Beide Messgrößen lassen prinzipiell keine Rückschlüsse auf Zusammensetzung und Herkunft der organischen Belastung zu. Erhöhte AOX – Befunde in städtischen Ballungsräumen wie Berlin dürften jedoch einem vornehmlich anthropogenen Eintrag über kommunale Kläranlagen zuzuschreiben sein. TOC-Einträge können sowohl anthropogenen Ursprungs als auch natürlichen Ursprungs z.B. durch den Eintrag von Huminstoffen aus dem Einzugsgebiet bedingt sein, was die ökologische Aussagefähigkeit des Parameters teilweise einschränkt. Bewertungsmaßstab ist für beide Messgrößen das 90-Perzentil. Unter Anwendung dieses strengen Maßstabs wird die Zielgröße Güteklasse II für den TOC bereits in den Zuflüssen nach Berlin und im weiteren Fließverlauf durch die Stadt in sämtlichen Haupt- und Nebenfließgewässern überschritten . Für AOX liegen die Messwerte nicht durchgängig für alle Fließabschnitte der Berliner Oberflächengewässer vor. Dennoch lässt sich ableiten, dass lediglich in den Gewässerabschnitten, die unmittelbar den Klärwerkseinleitungen ausgesetzt sind (Neuenhagener Fließ, Wuhle, Teltowkanal, Nordgraben), leicht erhöhte AOX – Messwerte auftreten und die Zielvorgabe knapp überschritten wird (Güteklasse II bis III). Ammonium-Stickstoff (02.01.3), Nitrit-Sickstoff (02.01.5), Nitrat-Stickstoff (02.01.4) Stickstoff tritt im Wasser sowohl molekular als Stickstoff (N 2 ) als auch in anorganischen und organischen Verbindungen auf. Organisch gebunden ist er überwiegend in pflanzlichem und tierischem Material (Biomasse) festgelegt. Anorganisch gebundener Stickstoff kommt vorwiegend als Ammonium (NH 4 ) und Nitrat (NO 3 ) vor. In Wasser, Boden und Luft sowie in technischen Anlagen (z.B. Kläranlagen) finden biochemische (mikrobielle) und physikalisch-chemische Umsetzungen der Stickstoffverbindungen statt (Oxidations- und Reduktionsreaktionen). Eine Besonderheit des Stickstoffeintrages ist die Stickstofffixierung, eine biochemische Stoffwechselleistung von Bakterien und Blaualgen (Cyanobakterien), die molekularen gasförmigen Stickstoff aus der Atmosphäre in den Stoffwechsel einschleusen können. Innerhalb Berlins ist der Eintrag über die Kläranlagen die Hauptbelastungsquelle . Durch die Regenentwässerungssysteme werden sporadisch kritische Ammoniumeinträge verursacht. Ammonium kann in höheren Konzentrationen erheblich zur Belastung des Sauerstoffhaushalts beitragen, da bei der mikrobiellen Oxidation (Nitrifikation) von 1 mg Ammonium-Stickstoff zu Nitrat rd. 4,5 mg Sauerstoff verbraucht werden. Dieser Prozess ist allerdings stark temperaturabhängig. Erhebliche Umsätze erfolgen nur in der warmen Jahreszeit . Bisweilen überschreitet die Sauerstoffzehrung durch Nitrifikationsvorgänge die durch den Abbau von Kohlenstoffverbindungen erheblich. Toxikologische Bedeutung kann das Ammonium bei Verschiebung des pH-Wertes in den alkalischen Bereichen erlangen, wenn in Gewässern mit hohen Ammoniumgehalten das fischtoxische Ammoniak freigesetzt wird. Nitrit-Stickstoff tritt als Zwischenstufe bei der mikrobiellen Oxidation von Ammonium zu Nitrat ( Nitrifikation ) auf. Nitrit hat eine vergleichsweise geringere ökotoxikologische Bedeutung. Mit zunehmender Chloridkonzentration verringert sich die Nitrit-Toxizität bei gleichem pH-Wert. Während für die Spree, Dahme und Havel im Zulauf nach Berlin die LAWA – Qualitätsziele (Güteklasse II) für NH 4 -N eingehalten werden, werden die Ziele überall dort überschritten, wo Gewässer dem Ablauf kommunaler Kläranlagen und Misch- und Regenwassereinleitungen ausgesetzt sind. Die Ertüchtigung der Nitrifikationsleistungen in den Klärwerken der Berliner Wasserbetriebe seit der Wende führte stadtweit zu einer signifikanten Entlastung der Gewässer mit Gütesprüngen um drei bis vier Klassen . Viele Gewässerabschnitte konnten den Sprung in die Güteklasse II schaffen. Die Werte für die Wuhle und in Teilen für die Vorstadtspree sind für den jetzigen Zustand nicht mehr repräsentativ, da mit der Stilllegung des Klärwerkes Falkenberg im Frühjahr 2003 eine signifikante Belastungsquelle abgestellt wurde. Mit der Stillegung des Klärwerkes Marienfelde (Teltowkanal, 1998) und der Ertüchtigung von Wassmansdorf konnte die hohe Belastung des Teltowkanals ebenfalls deutlich reduziert werden. Das Neuenhagener Mühlenfließ ist nach wie vor sehr hoch belastet. Hier besteht Handlungsbedarf beim Klärwerk Münchehofe . Die Stadtspree (von Köpenick bis zur Mündung in die Havel) weist durchgängig die Güteklasse II bis III auf und verfehlt damit die LAWA – Zielvorgabe ebenso wie die Unterhavel , der Teltowkanal und die mischwasserbeeinflussten innerstädtischen Kanäle . In 2001 ist eine Überschreitung der LAWA – Zielvorgabe für Nitrit-Stickstoff (90-Perzentil) in klärwerksbeeinflussten Abschnitten von Neuenhagener Fließ und Wuhle (s. Anmerkung oben) sowie in drei Abschnitten des Teltowkanals zu verzeichnen. Die Nitratwerte der Berliner Gewässer sind durchgehend unkritisch. Chlorid (02.01.8) In den Berliner Gewässern liegt der natürliche Chloridgehalt unter 60 mg/l. Anthropogene Anstiege der Chloridkonzentration erfolgen durch häusliche und industrielle Abwässer sowie auch durch Streusalz des Straßenwinterdienstes. Einem typischen Jahresverlauf unterliegt das Chlorid durch den sommerlichen Rückgang des Spreewasserzuflusses und der damit verbundenen Aufkonzentrierung in der Stadt. Bei Chloridwerten über 200 mg/l können für die Trinkwasserversorgung Probleme auftauchen. Die Chloridwerte der Berliner Gewässer stellen kein gewässerökologisches Problem dar. Sulfat (02.01.9) Der Beginn anthropogener Beeinträchtigungen im Berliner Raum wird mit etwa 120 mg/l angegeben. Die Güteklasse II (< 100 mg/l) kann somit für unsere Region nicht Zielgröße sein. Die Bedeutung des Parameters Sulfat liegt im Spree-Havel-Raum weniger in seiner ökotoxikologischen Relevanz, als vielmehr in der Bedeutung für die Trinkwasserversorgung. Der Trinkwassergrenzwert liegt bei 240 mg/l (v.a. Schutz der Nieren von Säuglingen vor zu hoher Salzfracht). Die Zuläufe nach Berlin weisen Konzentrationen von 150 bis 180 mg/l auf. Hier ist in Zukunft mit einer Zunahme der Sulfatfracht aus den Bergbauregionen der Lausitz zu rechnen. Folgende Einträge in die Gewässer sind im Spreeraum von Relevanz: Eintrag über Sümpfungswässer aus Tagebauen Direkter Eintrag aus Tagebaurestseen, die zur Wasserspeicherung genutzt werden indirekter Eintrag über Grundwässer aus Tagebaugebieten Einträge des aktiven Bergbaus Atmosphärischer Schwefeleintrag (Verbrennung fossiler Brennstoffe) Diffuse und direkte Einträge (Kläranlageneinleitungen, Abschwemmungen, Landwirtschaft) In gewässerökologischer Hinsicht können erhöhte Sulfatkonzentrationen eutrophierungsfördernd sein. Sulfat kann zur Mobilisierung von im Sediment festgelegten Phosphor führen. Gesamt-Phosphor (02.01.6) Phosphor ist ein Nährstoffelement, das unter bestimmten Bedingungen Algenmassenentwicklungen in Oberflächengewässern verursachen kann (nähere Erläuterungen siehe Karte 02.03). Unbelastete Quellbäche weisen Gesamt-Phosphorkonzentrationen von weniger als 1 bis 10 µg/l P, anthropogen nicht belastete Gewässeroberläufe in Einzugsgebieten mit Laubwaldbeständen 20-50 µg/l P auf. Die geogenen Hintergrundkonzentrationen für die untere Spree und Havel liegen in einem Bereich um 60 bis 90 µg/l P. Auf Grund der weitgehenden Verwendung phosphatfreier Waschmittel und vor allem auch der fortschreitenden Phosphatelimination bei der Abwasserbehandlung ist der Phosphat-Eintrag über kommunale Kläranlagen seit 1990 deutlich gesunken , vor allem in den Jahren bis 1995. Der Eintrag über landwirtschaftliche Flächen ist ebenfalls rückgängig. Die Phosphorbelastung der Berliner Gewässer beträgt für den Zeitraum 1995-1997: Zuflüsse nach Berlin 188 t/a Summe Kläranlagen 109 t/a Misch- und Trennkanalisation 38 t/a Summe Zuflüsse und Einleitungen 336 t/a Summe Abfluss 283 t/a In den Zuflüssen nach Berlin überwiegen die diffusen Einträge mit ca. 60 %. Der Grundwasserpfad ist mit ca.50 % der dominante Eintragspfad (diffuser Eintrag 100 %). Beim Gesamtphosphor wird der Mittelwert der entsprechenden Jahre zugrundegelegt. Deutlich wird die erhöhte P-Belastung der Berliner Gewässer etwa um den Faktor 2 bis 3 über den Hintergrundwerten. Eine Ausnahme bildet der Tegeler See . Der Zufluss zum Hauptbecken des Tegeler Sees wird über eine P-Eliminationsanlage geführt und somit der Nährstoffeintrag in den See um ca. 20 t/a entlastet.

Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany - A five-year study

An hourly quantification of inorganic water-soluble PM10 ions and corresponding trace gases was performed using the Monitor for AeRosols and Gases in ambient Air (MARGA) at the TROPOS research site in Melpitz, Germany. The data availability amounts to over 80% for the five-year measurement period from 2010 to 2014. Comparisons were performed for the evaluation of the MARGA, resulting in coefficients of determinations (slopes) of 0.91 (0.90) for the measurements against the SO2 gas monitor, 0.84 (0.88), 0.79 (1.39), 0.85 (1.20) for the ACSM NO3 â Ì, SO4 2â Ì and NH4 + measurements, respectively, and 0.85 (0.65), 0.88 (0.68), 0.91 (0.83), 0.86 (0.82) for the filter measurements of Clâ Ì, NO3 â Ì, SO4 2â Ì and NH4 +, respectively. A HONO comparison with a batch denuder shows large scatter (R2 = 0.41). The MARGA HNO3 is underestimated compared to a batch and coated denuder with shorter inlets (slopes of 0.16 and 0.08, respectively). Less NH3 was observed in coated denuders for high ambient concentrations. Long-time measurements show clear daily and seasonal variabilities. Potential Source Contribution Function (PSCF) analysis indicates the emission area of particulate ions Clâ Ì, NO3 â Ì, SO4 2â Ì, NH4 +, K+ and gaseous SO2 to lie in eastern European countries, predominantly in wintertime. Coarse mode sea salt particles are transported from the North Sea to Melpitz. The particles at Melpitz are nearly neutralised with a mean molar ratio of 0.90 for the five-year study. A slight increase of the neutralization ratio over the last three years indicates a stronger decrease of the anthropogenically emitted NO3 â Ì and SO4 2â Ì compared to NH4 +. © The Author(s) 2017

A national nitrogen target for Germany

The anthropogenic nitrogen cycle is characterized by a high complexity. Different reactive nitrogen species (NH3, NH4+, NO, NO2, NO3-, and N2O) are set free by a large variety of anthropogenic activities and cause numerous negative impacts on the environment. The complex nature of the nitrogen cycle hampers public awareness of the nitrogen problem. To overcome this issue and to enhance the sensitivity for policy action, we developed a new, impact-based integrated national target for nitrogen (INTN) for Germany. It is based on six impact indicators, for which we derived the maximum amount of nitrogen losses allowed in each environmental sector to reach related state indicators on a spatial average for Germany. The resulting target sets a limit of nitrogen emissions in Germany of 1053 Gg N yr-1. It could serve as a similar means on the national level as the planetary boundary for reactive nitrogen or the 1.5 ˚C target of the climate community on the global level. Taking related uncertainties into account, the resulting integrated nitrogen target of 1053 Gg N yr-1 suggests a comprehensible INTN of 1000 Gg N yr-1 for Germany. Compared to the current situation, the overall annual loss of reactive nitrogen in Germany would have to be reduced by approximately one-third. © 2021 by the authors

Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030

Secondary inorganic PM2.5 particles are formed from SOx (SO2+SO42-), NOx (NO+NO2), and NH3 emissions, through the formation of either ammonium sulfate ((NH4)2SO4) or ammonium nitrate (NH4NO3). EU limits and WHO guidelines for PM2.5 levels are frequently exceeded in Europe, in particular in the winter months. In addition the critical loads for eutrophication are exceeded in most of the European continent. Further reductions in NH3 emissions and other PM precursors beyond the 2030 requirements could alleviate some of the health burden from fine particles and also reduce the deposition of nitrogen to vulnerable ecosystems. Using the regional-scale EMEP/MSC-W model, we have studied the effects of year 2030 NH3 emissions on PM2.5 concentrations and depositions of nitrogen in Europe in light of present (2017), past (2005), and future (2030) conditions. Our calculations show that in Europe the formation of PM2.5 from NH3 to a large extent is limited by the ratio between the emissions of NH3 on one hand and SOx plus NOx on the other hand. As the ratio of NH3 to SOx and NOx is increasing, the potential to further curb PM2.5 levels through reductions in NH3 emissions is decreasing. Here we show that per gram of NH3 emissions mitigated, the resulting reductions in PM2.5 levels simulated using 2030 emissions are about a factor of 2.6 lower than when 2005 emissions are used. However, this ratio is lower in winter. Thus further reductions in the NH3 emissions in winter may have similar potential to SOx and NOx in curbing PM2.5 levels in this season. Following the expected reductions of NH3 emission, depositions of reduced nitrogen (NH3+NH4+) should also decrease in Europe. However, as the reductions in NOx emission are larger than for NH3, the fraction of total nitrogen (reduced plus oxidised nitrogen) deposited as reduced nitrogen is increasing and may exceed 60 % in most of Europe by 2030. Thus the potential for future reductions in the exceedances of critical loads for eutrophication in Europe will mainly rely on the ability to reduce NH3 emissions. © Author(s) 2022

Qualität des oberflächennahen Grundwassers 1991

Auswahl der Indikatoren Als Indikatoren für die Qualität des oberflächennahen Grundwassers wurden die Standardparameter Chlorid, Sulfat, Ammonium, Nitrat, Oxidierbarkeit und Leitfähigkeit sowie die Belastung mit AOX und Pestiziden ausgewählt. Ammonium und Nitrat gelten als Parameter für Verunreinigungen des oberflächennahen Grundwassers durch Abwässer und Fäkalien, die Oxidierbarkeit läßt Rückschlüsse auf die organische Belastung zu. Die elektrische Leitfähigkeit , ein Summenparameter für gelöste Substanzen im Grundwasser, steht als Kenngröße für die Belastung mit anorganischen Stoffen und als Maß für eine allgemeine Verunreinigung mit Salzen. Gleiches gilt für die Chloride . ”Chemisch stabil”, unterliegen Chloride keinen Veränderungen und können daher über weite Strecken verfolgt werden. Grundwasserbeeinträchtigungen durch erhöhte Sulfat -Werte deuten auf Trümmerschutt im Untergrund bzw. auf Deponien mit hohem Bauschuttanteil hin. AOX steht für die adsorbierbaren halogenierten Kohlenwasserstoffe und dient als Indikator für intensive industrielle Nutzung. Die Anwesenheit von AOX ist gleichermaßen charakteristisch für Verunreinigungen durch die Lagerung industrieller Abfälle (Altlasten). Grenzwerte Die graphische Darstellung der Ergebnisse orientiert sich an den gesetzlich festgelegten Grenzwerten der Trinkwasserverordnung . Dabei ist zu berücksichtigen, daß diese Grenzwerte streng genommen nur für das Trinkwasser (Reinwasser) gelten, hier aber mangels anderer Kriterien als Beurteilungsmaßstab für das Grundwasser herangezogen werden. Grundsätzlich ist eine Grundwasserqualität anzustreben, die anthropogen nicht beeinflußt wurde. In Tabelle 1 sind für die ausgewählten Parameter die entsprechenden Grenzwerte der Trinkwasserverordnung zusammengestellt. Für AOX lag die Nachweisgrenze in dem angeführten Meßprogramm bei 0,01 mg/l, das heißt, in der Karte konnte unterhalb des Grenzwertes keine Differenzierung erfolgen. Die 10-fache Überschreitung dieses Wertes wurde gesondert gekennzeichnet. Da bei den Pestiziduntersuchungen an vielen Standorten mehrere Substanzen gefunden wurden, wurde zur Beurteilung in der Karte der Summengrenzwert von 0,0005 mg/l herangezogen. Darstellung Auf die Darstellung mittels Isolinien (Linien gleicher Konzentration eines Stoffes) oder in Form von Gleichenkarten, womit die flächenhafte Verteilung der Konzentrationen abgebildet werden kann, wurde verzichtet. Testrechnungen mit Hilfe von geostatistischen Verfahren (Kannenberg 1992) haben gezeigt, daß insbesondere bei Grundwasserbelastungen, die auf punktuelle Verursacherquellen zurückzuführen und daher lokal begrenzt sind, die Punktdaten wegen der unzureichenden Meßpunktdichte nicht auf die Fläche übertragen werden können. Die dabei ermittelten Schätzfehler sind zu groß. Bei Stoffen, die überwiegend durch diffuse Quellen eingetragen werden – wie z.B. Sulfat – werden deutlich bessere Ergebnisse erzielt. Im Interesse einer einheitlichen Darstellung wurden die Meßwerte aber immer punktbezogen dargestellt. Die Karte gibt einen Überblick über die Verteilung der untersuchten Stoffe im Grundwasser. Lokal begrenzte Verunreinigungen wie z.B. durch Altlasten können mit der vorhandenen Meßpunktdichte nicht oder nur zum Teil erfaßt werden.

Gewässergüte (Chemie) 1991

Nach wie vor ist in den Berliner Gewässern die Anreicherung mit Pflanzen-Nährstoffen, vor allem mit Stickstoff- und Phosphorverbindungen, sehr hoch. Damit verbunden ist das Auftreten von beträchtlichen Schwankungen im Sauerstoffgehalt, die durch erhöhtes Wachstum bzw. Abbau von Algen verursacht werden. Im allgemeinen ist die Nährstoffkonzentration stark von der Wasserführung (Abfluß) abhängig. In niederschlagsreichen Jahren ist deshalb die Wassergüte grundsätzlich besser als in Jahren mit nur geringem Niederschlag. Ein ”Verdünnungseffekt” durch hohe Abflüsse tritt in Großstädten jedoch nur bedingt auf, da hier der Eintrag von Nähr- und Schadstoffen mit den Niederschlägen steigt. Das Jahr 1991 ist durch eine sehr geringe Abflußmenge gekennzeichnet (Sommermittelwert am Pegel Sophienwerder = 15,17 m 3 /s). Einfluß der Klärwerke Das Hauptgewässer Berlins, die Spree, erreicht das Stadtgebiet relativ mäßig belastet. Die Stadtspree, die kleinen Nebenflüsse und die Kanäle in Berlin werden durch Industrie, Großkläranlagen und Regenwassereinleitungen stark bis übermäßig belastet. Außerordentlich stark belastet sind die Gewässer, die von den Klärwerksabläufen unmittelbar betroffen sind. Besonders hohe Belastungen weisen dabei die Gewässer auf, deren Abflüsse im Vergleich zu den Einleitungsmengen gering sind, wie z. B. Neuenhagener Mühlenfließ, Wuhle, Nordgraben, Panke und auch Teltowkanal. Gut die Hälfte der von Klärwerksabläufen beeinflußten Gewässer mündet in die Spree. Die Stadtspree und die von ihr abhängenden Kanäle weisen daher ebenfalls hohe Belastungswerte auf. Belastungen durch Rieselfeldabläufe haben für die Gewässer aufgrund umfangreicher Stillegungen nur noch eine untergeordnete bzw. keine Bedeutung mehr. Nach Inbetriebnahme des Klärwerkes Schönerlinde und der Erweiterung des Klärwerkes Ruhleben werden nur noch wenige Rieselfelder betrieben. Der Teltowkanal ist Aufnahmegewässer der Klärwerksabläufe Waßmannsdorf, Marienfelde, Ruhleben und Stahnsdorf. Die Phosphat-Reduzierungsmaßnahmen in den Klärwerken führen zwar zu einer verringerten Phosphatbelastung; das Nährstoffüberangebot im Teltowkanal bleibt dennoch gegeben. Die hohen E. coli-Werte zeugen von einer relativ hohen Fäkalwasserbelastung. Die Wasserbeschaffenheit der Havel unterhalb der Spreemündung ist geprägt von der erheblich höheren Abflußmenge der Spree. Durch die seit Mitte der 80er Jahre in Berlin (Ost- und Westteil der Stadt) vorgenommenen Gewässerschutzmaßnahmen, wie Einbau von Simultanfällungsanlagen in den Klärwerken, Inbetriebnahme der Phosphat-Eliminationsanlage am Zufluß des Nordgrabens in den Tegeler See und Umleitung des Ablaufes der Kläranlage Ruhleben von der Spree in den Teltowkanal, konnten die zuvor übermäßig hohen Phosphatfrachten der Stadtspree und der Berliner Unterhavel deutlich reduziert werden. Gegenüber dem in der ersten Ausgabe des Umweltatlasses dargestellten vergleichbaren Abflußjahr 1976 wurde bei der Phosphatbelastung eine Verbesserung um etwa eine Bewertungsklasse erreicht. Eine weitere Reduzierung ist jedoch notwendig, da sich die Phytoplankton-Massenentwicklung nicht merklich verringert hat. Von allen Berliner Gewässern sind die als Badegewässer genutzten, seenartigen Bereiche der Unterhavel am stärksten durch die intensive Entwicklung des Phytoplanktons beeinträchtigt. Gemessen an der Eutrophierungsschwelle von 0,01 mg/l PO 4 -P ist der Grad der Eutrophierung der Unterhavel immer noch zu hoch. Hinsichtlich der Ammoniumbelastung ist für das dargestellte Abflußjahr 1991 gegenüber 1980 sowie im Vergleich mit den Abflußjahren 1986 und 1989 noch keine signifikante Verbesserung der Gütebeschaffenheit erkennbar. Die in Tabelle 1 ausgewiesenen NH 4 -N-Konzentrationen belegen ein seit Jahren konstant hohes Niveau. An der Nährstoffbelastung dieser Gewässerabschnitte läßt sich besonders deutlich erkennen, daß der Hauptanteil der Nährstoffeinträge über die Klärwerke in und um Berlin erfolgt, da sich nahezu alle Abschnitte unterhalb von Klärwerksabflüssen befinden. Aufgrund der zukünftig zu erwartenden höheren Abwassermengen und der damit einhergehenden steigenden Ablaufmenge der Klärwerke in dem wachsenden Ballungsraum Berlin wird sich der Anteil der Einleitungen in die Berliner Gewässer erhöhen. Verschärfend für das Mißverhältnis zwischen natürlichem Wasserdargebot und dem nährstoffreichen Einleitungswasser kommt hinzu, daß sich in den kommenden Jahren die Abflußmenge der Spree durch geringere Zuführung von Sümpfungswasser aus dem Braunkohletagebau verringern wird. Nur durch konsequente Anwendung modernster Klärwerkstechnologie (Phosphat-Fällung, Stickstoffelimination, Ablauffiltration) in allen Klärwerken im Raum Berlin, Durchführung umfangreicher Sanierungs- und Erweiterungsarbeiten im Bereich der Abwasserkanalisation und Eindämmung der Einleitungsmengen aus der Regen- und Mischwasserkanalisation in die Gewässer ist eine spürbare Reduzierung der derzeit noch zu hohen Nährstoffbelastung in den Berliner Gewässern in den kommenden Jahren denkbar.

Gewässergüte (Chemie) 1991

Umweltatlas-Methode Die nach der ”Umweltatlas-Methode” berücksichtigten Parameter sollen die lokale und regionale Wasserqualität der Oberflächengewässer charakterisieren. Anders als bei der Gewässercharakterisierung nach der ”LAWA-Methode” (Länderarbeitsgemeinschaft Wasser 1991), bei der eine Vielzahl von Parametern zugrundegelegt und zu einer Gesamtbewertung zusammengefaßt wird, werden hier fünf der für die Eutrophierungs-Problematik der Berliner Gewässer maßgeblichen Parameter berücksichtigt und getrennt voneinander bewertet und dargestellt. Dies sind Orthophosphat-Phosphor, Ammonium-Stickstoff, Sauerstoff-Sättigungsindex, Sauerstoff-Minimum und Titer für Escherichia coli. Hiermit läßt sich das relativ kleine Untersuchungsgebiet Berlin differenziert und übersichtlich darstellen. Die Klassifizierung erfolgt in Anlehnung an die Gewässergütekarte der Bundesrepublik Deutschland in vier Güteklassen mit drei Zwischenstufen. Die Klassengrenzen für die beiden Sauerstoff-Parameter wurden in Anlehnung an die in der Gewässergütekartierung der LAWA gewählten Klassen gesetzt. Die Konzentration der Nährstoffe Orthophosphat-Phosphor und Ammonium-Stickstoff wird den entsprechenden Güteklassen so zugeordnet, daß die Belastungsstufen der verschiedenen Parameter miteinander vergleichbar sind. Für das Algenwachstum ist der Phosphatgehalt im Gewässer der begrenzende Faktor. Die Schwelle zur Eutrophierung wird für rückgestaute Fließgewässer allgemein mit 0,01 – 0,03 mg/l angegeben. Der Wert 0,01 mg/l bildet daher die Obergrenze der Güteklasse 2 ”mäßig belastet”. Die Klassifikation für Ammonium-Stickstoff wurde aus dem Rheinbericht von 1978 übernommen, in dem Ammonium-Stickstoff bereits 7-stufig klassifiziert vorlag (IWAR 1978). Da viele Gewässerabschnitte in Berlin als Badegewässer genutzt werden, findet der bakteriologische Parameter Escherichia coli hier Berücksichtigung bei der Darstellung der Gewässergüte. In die vorliegende Karte wurden nur die wichtigsten Fließgewässer in Berlin sowie einige Brandenburger Fließstreckenabschnitte im direkten Umland von Berlin einbezogen. Die Gewässer wurden in 99 Abschnitte unterteilt, mit in der Regel jeweils einer Meßstelle in der Mitte des Streckenabschnittes. Die Untersuchungsergebnisse dieser Meßstellen wurden als repräsentativ für den gesamten Abschnitt angesehen. Um den für belastete Gewässer besonders kritischen Zeitraum mit der größten biologischen Aktivität zu erfassen, wurden für die Darstellung die Werte des Sommerhalbjahres (1. 5. bis 31. 10.) berücksichtigt, und zwar für die Parameter Orthophosphat-Phosphor, Ammonium-Stickstoff und Sauerstoff-Sättigungsindex das Mittel des Sommerhalbjahres sowie für Sauerstoffgehalt und Titer für E. coli der jeweils ungünstigste Einzelwert in diesem Zeitraum. Analog zu den früheren Darstellungen anderer Abflußjahre im Umweltatlas wurden die Meßergebnisse nach einer 7-stufigen Skala von ”praktisch unbelastet” bis ”übermäßig verschmutzt” bewertet und entsprechend farblich dargestellt. Orthophosphat-Phosphor (PO 4 -P) Phosphat kann im Wasser in verschiedenen Formen vorhanden sein; von den Pflanzen kann der Phosphor jedoch nur in Form des gelösten Orthophosphat-Ions aufgenommen und zum Aufbau körpereigener Biomasse genutzt werden. Der überwiegende Teil der Phosphate in den Berliner Gewässern stammt aus den häuslichen Abwässern und hier vor allem aus dem Fäkalbereich. Die Verwendung von phosphathaltigen Reinigungsmitteln trägt ebenfalls zur Phosphatbelastung bei. Ein großer Teil des in Berlin anfallenden Abwassers wird bereits heute in den Klärwerken durch biologische Phosphat-Elimination bzw. durch chemische Phosphatfällung weitgehend entphosphatet. Ammonium-Stickstoff (NH 4 -N) Neben den Phosphaten sind es vor allem die Stickstoffverbindungen, die den Nährstoffgehalt des Wassers bestimmen. Im Wasser ist Stickstoff sowohl in elementarer als auch in Form von anorganischen und organischen Verbindungen enthalten. Der organisch gebundene Stickstoff liegt in den Gewässern in Form von Eiweißen vor, die aus abgestorbenen Organismen stammen. Pflanzen können den zum Aufbau ihrer körpereigenen Proteine erforderlichen Stickstoff normalerweise aber nur in Form von Nitrat- und Ammoniumionen aufnehmen. Die im Wasser vorhandenen Stickstoffverbindungen müssen deshalb zunächst entsprechend umgewandelt werden. Diese Aufgabe übernehmen Mikroorganismen, die dafür sorgen, daß die im Wasser vorhandenen Eiweißstoffe abgebaut werden. Andere Mikroorganismen wandeln das dabei entstehende Ammonium unter aeroben Bedingungen (bei Anwesenheit von Sauerstoff) über Nitrit schließlich zu Nitrat um. In der Zeit mit einer hohen biogenen Aktivität (Frühjahr bis Herbst) verlaufen die Stoffumwandlungsprozesse im Gewässer schneller, so daß analog zum geringeren Ammoniumgehalt ein höherer Nitratgehalt im Gewässer vorliegt. Da Nitrit nur ein Zwischenprodukt bei dieser Umwandlung ist, bleibt der Nitritgehalt im Gewässer meist niedrig. Abbildung 1 zeigt die Gehalte von Ammonium, Nitrit und Nitrat an der Meßstelle Teltow-Werft Schönow. Die geschilderten Stoffumwandlungsprozesse im Gewässer werden an dieser Meßstelle jedoch durch die Einleitungen der Klärwerke maßgeblich beeinflußt. Die geringe Ammoniumbelastung im Sommer ist an dieser Probenahmestelle (hinter Klärwerkszulauf Ruhleben) vor allem auf die im Sommer bessere Reinigungsleistung der Klärwerke zurückzuführen. Die Tatsache, daß der Ammoniumgehalt im Sommer darüberhinaus stärker sinkt als der Nitratgehalt steigt, ist mit der Bindung von Nitrat durch die Algen erklärbar. In den Berliner Gewässern stammt der überwiegende Teil der Stickstoffverbindungen aus den häuslichen Abwässern. Besonders belastend für den Sauerstoffhaushalt der Gewässer sind Klärwerke, über die ein hoher Anteil Ammonium-Stickstoff eingeleitet wird, da der Abbauprozeß bis zum Nitrat dann im Gewässer selbst stattfindet. Für die Umwandlung von 1 mg/l Ammonium-Stickstoff zu Nitrat-Stickstoff werden ca. 4,4 mg/l Sauerstoff benötigt. Sauerstoff-Sättigungsindex Der Gehalt an gelöstem Sauerstoff im Gewässer wird vor allem von der Wassertemperatur beeinflußt; mit zunehmender Wassertemperatur nimmt die Aufnahmefähigkeit des Wassers für Sauerstoff ab. Neben hohen Temperaturen im Sommer führt die Aufwärmung der Gewässer durch Kühlwassereinleitungen zu einer weiteren Belastung des Sauerstoffhaushaltes: Alle chemischen und biologischen Prozesse werden beschleunigt; der Sauerstoffbedarf steigt, während die Aufnahmefähigkeit von Sauerstoff sinkt. Gerade langsam fließende und eine große Oberfläche bildende, seenartig erweiterte Fließgewässer weisen dann zunehmend kritische Sauerstoffgehalte auf. Der Sauerstoff-Sättigungsindex gibt an, wieviel Prozent der physikalisch möglichen Sauerstoffsättigung zum Zeitpunkt der Probenahme erreicht wird. In unbelasteten Gewässern treten normalerweise keine größeren Schwankungen beim Sauerstoff-Sättigungsindex auf und der Sauerstoffgehalt entspricht etwa dem theoretisch möglichen (Sauerstoff-Sättigungsindex ca. 100 %). Da bei den meisten Abbauvorgängen im Gewässer Sauerstoff verbraucht, bei starkem Algenwachstum über die Photosynthese aber Sauerstoff produziert wird, können in nährsalzreichen Gewässern beträchtliche Schwankungen auftreten. So sind nicht nur geringe Sauerstoff-Sättigungsindizes, sondern auch ein starker biogener Sauerstoff-Eintrag und damit eine Sauerstoff-Übersättigung ein Indiz für eine Gewässerbelastung. Abbildung 2 zeigt für das Abflußjahr 1991 den Verlauf von Wassertemperatur und gemessenem Sauerstoffgehalt beispielhaft für die Meßstelle Sophienwerder (Spree). Daneben wurde der aufgrund der Temperatur mögliche Sauerstoffgehalt bei 100 % Sättigung abgebildet, um Über- und Untersättigung sichtbar zu machen. Während im Winter und Frühjahr der gemessene Sauerstoffgehalt im wesentlichen dem aufgrund der Temperatur zu erwartenden entspricht, ist das Wasser im Sommer nicht gesättigt, was auf das Überwiegen von Sauerstoff verbrauchenden Abbauvorgängen im Sommer zurückgeführt werden kann. Sauerstoff-Minimum Der für die Atmung aller Organismen notwendige Sauerstoff wird dem Wasser über die Luft bzw. durch die Photosynthese der Wasserpflanzen zugeführt. Der Sauerstoffgehalt belasteter, langsam fließender Gewässer unterliegt damit nicht nur klimatischen (Windgeschwindigkeit, Temperatur, Lichteinstrahlung usw.), sondern auch jahres- und tageszeitlichen Schwankungen, die auf übermäßiges Algenwachstum zurückzuführen sind. Zusätzlicher Sauerstoff durch die Assimilationstätigkeit der Algen kann aber nur in den oberen Wasserschichten erzeugt werden. Maßgebend ist die Eindringtiefe des Sonnenlichts in ein Gewässer. Die einzelnen Fischarten benötigen für ihre Lebensfähigkeit jeweils bestimmte Umweltbedingungen. Hierzu gehört auch ein Mindestgehalt an gelöstem Sauerstoff, der im Gewässer nicht unterschritten werden darf. Besonders kritische Sauerstoffverhältnisse können sich stets bei Gewässern mit großen Regenwasser- oder Mischwassereinleitungen nach Starkregenfällen einstellen. Die mit dem Einleitungswasser eingebrachten organischen Stoffe werden im Gewässer mit Hilfe von Bakterien unter erheblichem Sauerstoffbedarf abgebaut. Hierbei kann mehr Sauerstoff im Gewässer verbraucht werden als über die Luft und durch biogene Produktion wieder ergänzt werden kann. Sinkt der Sauerstoffgehalt unter eine bestimmte Grenze (ca. 4 mg/l für Karpfenfische) ist ein für Fische kritischer Zustand erreicht. Bei einer weiteren Abnahme des Sauerstoffgehalts kommt es zum Fischsterben. Die komplexen und rasch ablaufenden Wechsel im Sauerstoffhaushalt in Gewässern mit hohen Nährstofffrachten und intensiver Phytoplanktonentwicklung lassen sich durch monatliche bzw. 14-tägige Messungen nur unvollständig erfassen. Die an den kontinuierlichen Untersuchungsstellen gemessenen, teilweise erheblichen tageszeitlichen Schwankungen im Sauerstoffgehalt spiegeln die angespannten Sauerstoffverhältnisse der Berliner Gewässer wider. Titer für Escherichia coli Zur Kontrolle der bakteriologischen Beschaffenheit eines Gewässers – insbesondere um die Eignung als Badegewässer zu prüfen – werden Untersuchungen auf Escherichia coli (E. coli) durchgeführt. E. coli selbst ist in der Regel kein Krankheitserreger; sein Vorkommen gibt jedoch einen Anhalt über die Belastung eines Gewässers mit tierischen und menschlichen Fäkalien. Sind viele Coli-Bakterien enthalten, so liegt eine starke Belastung mit Fäkalwasssern vor; d.h. die Wahrscheinlichkeit, daß auch Krankheitskeime vorhanden sind, steigt mit der Zunahme von E. coli. Angegeben wird bei der Bestimmung diejenige Menge Wasser, in der gerade noch das Bakterium E. coli nachgewiesen werden kann (Coli-Titer). Für Oberflächengewässer, die zum Baden geeignet sind, gilt nach der EG-Badewasserrichtlinie ein E. coli-Titer von 10 -1 ml als gerade noch tolerabel. Chlorophyll a Ergänzend zur Darstellung der Gütebeschaffenheit der Berliner Gewässer nach dem Umweltatlas-Verfahren ist im Hinblick auf das Hauptproblem in den Berliner Gewässern – die hohe Nährstoffbelastung – gesondert der Chlorophyll a-Gehalt der Gewässer dargestellt. Chlorophyll a ist der blaugrüne Anteil des Chlorophyll (Blattgrün). Die Bestimmung des Chlorophyll a-Gehaltes im Gewässer gibt Hinweise auf die Algendichte. Als absolutes Maß für die Phytoplanktonbiomasse kann der Chlorophyll a-Gehalt nicht gelten; jedoch gibt dieser Pigmentgehalt gemeinsam mit anderen Biomasse- und Bioaktivitätsparametern Auskunft über das mengenmäßige Vorkommen und die potentielle Stoffwechselleistung des Phytoplanktons in Gewässern. Die Pigmentausbeute der im Frühjahr und Spätherbst auftretenden Kieselalgen liegt bei gleicher Wellenlänge im Meßverfahren etwas höher, als bei den sich vorwiegend im Sommer bildenden Blaualgen. An speziellen Meßpunkten ist daher der Vergleich der Chlorophyll a-Werte mit den über Zählung ermittelten Algenbiomassen geboten. Die Entwicklung der Phytoplankton-Zusammensetzung ist jahreszeitlich unterschiedlich und hängt von verschiedenen Faktoren ab, u.a. Temperatur, Lichteinstrahlung, Zooplankton-Entwicklung und Nährstoffangebot/-zusammensetzung. Während sich im Frühjahr vorwiegend die Kieselalgen (Bacillariophyceae) entwickeln, bestimmen im Hochsommer überwiegend die Blaualgen (Cyanophyceae) die Zusammensetzung des Phytoplanktons (vgl. Abb. 3). Gerade die hohen Temperaturen und die intensive Lichteinstrahlung im Hochsommer begünstigen das Algenwachstum. Bei gleichzeitigem Überangebot an Nährstoffen im Gewässer kann es dann zur Massenentwicklung der Algen kommen. Das vornehmlich in den Monaten Mai/Juni auftretende Phytoplanktonminimum hängt von vielen Faktoren ab, wie Witterung, Algenarten-Zusammensetzung und insbesondere von der Zooplankton-Struktur. Wird die Frühjahrsalgengemeinschaft von freßbaren Arten (v.a. Kieselalgen) dominiert, kann es zu einer Massenentwicklung des Zooplanktons kommen, das in der Lage ist, große Mengen an Algenbiomasse zu filtrieren. Somit wird eine hohe Sichttiefe erreicht (vgl. Abb. 4). Dieses ”Klarwasserstadium” wird verstärkt in den Gewässern der Spree, der Oberhavel und teilweise in der Unterhavel beobachtet, nicht aber in den Gewässern der Dahme, wo bereits im Frühjahr fädige, kaum freßbare Blaualgen auftreten. Für die Kartendarstellung wurden die Meßwerte der Monate April bis September 1991 berücksichtigt. Für die einzelnen Gewässerabschnitte sind neben dem Mittelwert das Maximum und Minimum dieses Zeitraumes dargestellt. Die Bänder für die Mittelwertdarstellung der Monate April bis Juni sowie Juli bis September sollen einerseits die Frühjahrs-, andererseits die Hochsommerentwicklung des Phytoplanktons widerspiegeln. Da die Algenentwicklung u.a. die Trübung des Wassers beeinflußt, ist im 6. Band die Sichttiefe (Mittelwert des Sommerhalbjahres, April bis September) dargestellt. Die Meßwerte wurden einer 7-stufigen Bewertungsskala zugeordnet. Der für die Berliner Gewässer als Sanierungsziel betrachtete Wert von max. 30 µg Chlorophyll a pro Liter wird als oberer Wert der Güteklasse 1 bis 2 angesehen. Für die Güteklassen 1 bis 3 erfolgt eine lineare Einteilung der Meßwerte; die Abkehr von der linearen Einteilung in der Güteklasse 3 bis 4 erfolgt aufgrund einer größeren Ungenauigkeit des Meßverfahrens bei hohen Meßwerten.

Gewässergütebericht des Saarlandes

Der Gewässergütebericht gibt Auskunft über die Qualität der Gewässer erster und zweiter Ordnung des Saarlandes. Wichtige Kenngrößen organischer Belastung im Gewässer sind minimale Sauerstoffkonzentration, biochemischer Sauerstoffbedarf (BSB), gelöster organischer Kohlenstoff (DOC), gesamter organischer Kohlenstoff (TOC) und Ammonium. Der Bericht beruht auf Untersuchungen an insgesamt 374 biologischen Messstellen, darunter 240 Messstellen mit ergänzenden chemischen Messungen.

1 2 3 4 5161 162 163