Zahlreiche Holzarten sind besonders reich an flüchtigen organischen Verbindungen (VOCs), weshalb einige Anstrengungen unternommen wurden, ihre flüchtige Zusammensetzung zu ergründen. Solche Untersuchungen wurden oft in Hinblick auf die Auswirkungen der flüchtigen Emissionen von Holz und Holzwerkstoffen auf die Luftqualität in Innenräumen und damit auf ihre möglichen physiologischen Auswirkungen auf die menschliche Gesundheit motiviert. Holzemissionen wurden dabei oft als kritisch angesehen, da sie möglicherweise die Atemwege beeinträchtigen oder allergische Reaktionen hervorrufen können. In letzter Zeit gewinnt das Thema Holzgeruch jedoch zunehmend an Aufmerksamkeit, was die Wahrnehmung von Natürlichkeit und deren positiven Einfluss auf das Wohlbefinden betrifft. In dieser Hinsicht fühlt sich der Mensch zum Geruch von Bergwäldern und Bäumen hingezogen und sucht Entspannung in Verbindung mit solchen Gerüchen. Das Holz der Zirbe (Pinus cembra L.) ist eine besonders geschätzte Art, die auch als Zirbelkiefer und "Königin der Alpen" bekannt ist. Dieses Holz wird in Mitteleuropa häufig für den Möbelbau verwendet und wird wegen seines charakteristischen und langanhaltenden Geruchs geschätzt sowie in der Aromatherapie eingesetzt. Sein Geruch soll Stress abbauen, wobei physiologisch nachgewiesen wurde, dass durch Aufenthalt in der Umgebung von Zirbenholz die Herzfrequenz gesenkt werden kann. Es wurde auch berichtet, dass der Geruch einen gesunden Schlaf fördert, insbesondere bei Personen, die in Betten aus Zirbenholz schlafen. Einige wenige Studien haben sich bis dato mit der Zusammensetzung der ätherischen Öle beschäftigt, welche vorwiegend aus Nadeln und Zapfen gewonnen werden. Doch speziell die Geruchsstoffe aus dem Holz, welche für die physiologischen Effekte ursächlich scheinen, sind noch unzureichend untersucht. Zudem ist wenig über den Einfluss von Umwelt- und Trocknungsfaktoren während der Erstlagerung auf dieses charakteristische Holzgeruchsprofil bekannt. Ziel dieses Projektes ist es daher, die molekularen Grundlagen dieses hochwertigen Materials zu klären, wobei die VOC- und Geruchsstoffzusammensetzung identifiziert und quantifiziert sowie die Beziehungen zu allgemeinen holzchemischen Parametern hergestellt werden sollen. Hierzu werden ausgewählte Holzproben hinsichtlich der enthaltenen Zucker und Extraktstoffe bezüglich ihres Gehalts und ihrer Zusammensetzung mit etablierten Standardmethoden charakterisiert. Darüber hinaus werden Proben unterschiedlicher Herkunft vor und nach der Holztrocknung in einem arbeitsgruppenübergreifenden Ansatz komplementären Analysen unterzogen, die sowohl multidimensionale hochauflösende Gaschromatographie-Massenspektrometrie (GC/MS) als auch GCxGC-MS, Hochleistungs-Flüssigkeitschromatographie, Fourier-Transform-Infrarot-Spektroskopie und GC-MS mit Flüssiginjektion nach Silylierung umfassen. Weiterhin wird das Holzmehl mittels Pyrolyse-GC/MS (Py-GC/MS) sowie Thermodesorptions-GC/MS (TD-GC/MS) analysiert.
Das Projekt zielt darauf ab, die signalvermittelten Cross-Kingdom-Interaktionen zwischen der marinen Grünalge Ulva mutabilis und ihren assoziierten Bakterien zu verstehen. Morphogene wie das Thallusin werden von Bakterien abgegeben und induzieren vielfältige algale Entwicklungen. Thallusin Derivate sollen synthetisiert werden, um ihre quantitativen Struktur-Aktivitäts-Beziehungen zu untersuchen und Thallusin durch bildgebende Verfahren in Ulva zu lokalisieren. Zentrale Gene und Metabolite werden durch vergleichende Transkriptom- und Metabolomanalyse in der Thallusin-Homöostase identifiziert. Im Fokus steht dabei auch die Bedeutung von Thallusin für wirtschaftlich relevante Algen-Aquakulturen.
Wasserlösliche Polymere (WSPs) werden in großen Mengen produziert (1.000-1.000.000 Tonnen pro Jahr, je nach Polymer) und haben zahlreiche Anwendungen, die einen Eintrag in die aquatische Umwelt zur Folge haben können. In den wenigen Fällen in denen Konzentrationen zumindest abgeschätzt werden konnten wurde je nach Polymer und Nähe zu einer Quelle von Konzentrationen im µg/L bis mg/L Bereich berichtet. Dennoch sind zu wenige Informationen zu ihrem Vorkommen und Verhalten in der aquatischen Umwelt verfügbar, um eine Bewertung ihrer Umweltrelevanz vornehmen zu können. Dies liegt zum einen daran, dass spurenanalytische Methoden für WSPs in komplexen Umweltmatrizes noch nicht etabliert sind und zum anderen daran, dass die in Studien zum Abbau verwendeten analytischen Methoden oft nur die Betrachtung eines Primärabbaus oder des Grades der Mineralisierung zuließen. In vielen Fällen fanden Transformationsprodukte wenig oder keine Beachtung. Für andere WSPs fehlen solche Studien noch komplett. Auf Basis des Literaturstandes untersucht PolyAqua das Umweltvorkommen und Umweltverhalten (Biotransformation, gebildete Transformationsprodukte und Sorption) von 5 ausgewählten Polymeren (Polyethyleneoxid - PEO, Polyvinylpyrrolidone - PVP, Polydiallyldimethylammonium chlorid - PolyDADMAC, Polyacrylsäure - PAA und Polyacrylamid - PAM) in drei Arbeitspaketen. Im Arbeitspaket 1 werden spurenanalytische Methoden für WSPs entwickelt und somit der Grundstein für die weitere Untersuchung gelegt. Es werden verschiedene analytische Methoden betrachtet, die bereits vereinzelt für WSPs angewendet wurden oder auf die Übertragbarkeit von Mikro- oder Nanoplastik auf WSPs schließen lassen. In Arbeitspaket 2 werden die Biotransformation und das Sorptionsverhalten der ausgewählten WSPs in Laborstudien untersucht. Die vorrausgegangenen Arbeiten werden in Arbeitspaket 3 auf reale Systeme übertragen (Oberflächenwässer und potentielle Quellen wie kommunale Kläranlagen). In diesem Arbeitspaket wird ein Umweltmonitoring für die ausgewählten WSPs und deren in Arbeitspaket 2 identifizierten Transformationsprodukte durchgeführt das nicht nur die wässrige Phase, sondern auch feste Phasen wie Sediment, Schwebstoffe und Klärschlamm untersucht. Dieses Monitoring dient zur Bestätigung der in Arbeitspaket 2 erzielten Ergebnisse in realen Systemen. Die kombinierten Ergebnisse zeigen, in welchen Mengen WSPs in die aquatische Umwelt eingeleitet werden. Zudem verdeutlichen sie, wie sich die WSPs zwischen verschiedenen Phasen verteilen und welche Rolle Transformationsprozesse für ihr Umweltverhalten spielen.
Die Messung von Substanz-spezifischer Stabilisotopenfraktionierung in Grundwasserschadstoffen (Compound-Specific Isotope Analysis, CSIA) ist ein etablierter Indikator für Abbau stromabwärts von Kontaminationsquellen in Altlasten. Laufende Forschungsarbeiten konzentrieren sich darauf, diesen Ansatz nun auch für diffuse (d.h. nicht Punktquellen) Kontaminanten wie das Pestizid Atrazin im niedrigen µg/L bis sub-µg/L Konzentrationsbereich vorzuspuren. Hier bietet CSIA einen machtvollen Ansatz, Abbau sogar über Zeitskalen sichtbar zu machen, die sonst Untersuchungen gar nicht zugänglich wären, oder wenn fluktuierende Konzentrationen eine Abschätzung erschweren. Der Ansatz beruht auf der Beobachtung, dass sich Isotopenwerte von Atrazin während Biotransformation ändern und somit ein Konzentrations-unabhängiges Indiz für Abbau liefern. Für einen Durchbruch von Spurenschadstoff CSIA im Feld sind jedoch kritische methodologische Fortschritte nötig. (1) Niedrige Schadstoffkonzentrationen (sub-µg/L) in Grundwasser treten in Gegenwart viel höherer Konzentrationen (mg/L) von gelöstem organischen Kohlenstoff (DOC) auf, was selektive und sensitive Spurenschadstoff CSIA stark limitiert. Mit Bakkours Expertise in selektiven Anreicherungs- und Aufreinigungstechniken zielen wir auf entscheidende Verbesserungen für empfindliche CSIA von Spurenschadstoffen in Grundwasserproben. (2) Isotopenfraktionierung in Laborexperimenten wird typischerweise bei viel höheren Konzentrationen (mg/L) als im Grundwasser (sub-µg/L) bestimmt. Mit Elsners Expertise in Chemostat und Fed-Batch Experimenten werden wir Isotopenfraktionierung von Atrazin im niedrigen Konzentrationsregime hinterfragen, als belastbare Basis für Feldinterpretationen. (3) Um als Indikator für Spurenschadstoffabbau zu dienen, müssen die Abbau-induzierten Änderungen in Isotopenwerten größer sein als die Bandbreite in kommerziellen Produkten. In Israel, wo Atrazin noch routinemäßig eingesetzt wird, werden wir daher in einer gemeinsamen Anstrengung Atrazinisotopenwerte (d13C, d15N) im Küstenaquifer analysieren und mit kommerziellen Atrazinprodukten vergleichen. (4) Um solche Isotopen-basierten Feldergebnisse kritisch zu hinterfragen, nutzen wir Bernsteins Expertise in mikrobiologischen Methoden der Hydrologie. Die vereinten Fortschritte werden es uns ermöglichen, die Anwendbarkeit von Spurenschadstoff CSIA für niedrige Konzentrationen im Grundwasser grundlegend zu erforschen.