API src

Found 132 results.

Kleintechnische Vergärungsversuchsanlage (KTVA)

Das Institut für Abfall- und Kreislaufwirtschaft verfügt seit dem Jahr 2010 über eine 'Kleintechnische Vergärungsversuchsanlage' (KTVA) zur Durchführung langfristiger, anaerober Vergärungsversuche im kontinuierlichen Vergärungsverfahren. Hauptbestandteil ist ein Edelstahlreaktor (Vol. = 1.100 l), welcher beheizbar, durchmischbar und kontinuierlich beschickbar ist. Zusätzlich verfügt die KTVA über einen Vorlage- bzw. Hydrolysebehälter und einen Nachgärbehälter. Derzeit befindet sich die KTVA im Probebetrieb und wird zeitnah für orientierende Versuche genutzt. Mit Hilfe kontinuierlicher Messungen der Zusammensetzung des produzierten Biogases können die Vergärungsprozesse überwacht und optimiert werden.

Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption, Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption

1. Vorhabenziel: Ein Schwerpunkt der nächsten Jahrzehnte bildet die Eisensulfat-Eliminierung aus Bergbauabwässern. Es ist bekannt, dass Chitosan über sehr gute Schwermetallbindungseigenschaften verfügt. Eigene Forschungen zeigten, dass unerwartet hohe Abreinigungsleistungen möglich sind. Gegenwärtig ist der Bindungsmechanismus nicht stöchiometrisch zu erklären, da eine Salzmineralisation durch Chitosan ausgelöst wird. Mit 50kg Chitosan konnten im Großversuch 500 t Eisenhydroxid bzw. -sulfat gebunden werden. Damit ist ein kostengünstiger Einsatz bei geringer Modifizierung vorhandener Anlagetechnik gegeben. Für die Einführung dieser Technologie werden jedoch bedeutende Mengen an Chitosan benötigt, die aus Importen bereitgestellt werden müssten. Ein Weg, die Wirksamkeit der Flockungsmittel zu erhöhen und den Bedarf an Chitosan zu verringern, ist die Vernetzung/ Co-Polymerisierung von Chitosan. Die aus Bier- und Gärhefen gewonnen Zellwände, welche aus einem Glucan-Chitin-Komplex bestehen, sollen so modifiziert werden, dass sie zur Vernetzung von Chitosanketten geeignet sind und dadurch hochmolekulare Flockungsmittel mit hoher Reaktivität entstehen. Mit diesen soll verhüttbares Eisen aus Tagebauwässern gewonnen werden. Ziel ist die Technologie- und Ausrüstungsentwicklung für die Produktion der Biopolymere und deren Test bei Eisensulfat haltigen Oberflächenwässern. 2. Arbeitsplan: 1. Test verschiedener Methoden zur co-polymeren Vernetzung von Chitosan 2. Auswahl geeigneter neuer Materialkombinationen und Untersuchung der Reaktivität 3. Entwicklung eines praktikablen im Großmaßstab umsetzbaren Verfahrens 4. Optimierung der Prozessstufen zur Trennung von huminhaltigen und mineralischen Stoffen sowie Eisensalzen 5. Schmelz- und Verhüttungsversuche 6. Entwicklung einer Pilotanlage zum Zellaufschluss und Herstellung des aktiven Glucan-Chitin-Chitosan-Komplexes.

BioKS - Einfluss der Biofilmbildung auf Korrosion und Scaling in geothermischen Anlagen - in-situ Monitoring und Test von Gegenmaßnahmen in Bypass-Systemen, Teilvorhaben: Bypassexperimente

Im diesem Vorhaben soll der Einfluss der Temperatur auf die Biofilmbildung und die damit verbundene Korrosions- und Scaling-Rate erforscht werden. Unter Einsatz eines Bypass-Systems und ergänzenden Laborexperimenten sollen Untersuchungen mit verschiedenen Werkstoffen und unterschiedlichen Injektionstemperaturen an verschiedenen Standorten durchgeführt werden. Es ist zu prüfen, ob es in den verschiedenen Anlagen zu einem signifikanten Wachstum von Biofilmen kommt. Grundlegende Untersuchungen zu den Wechselwirkungen zwischen dem Fluid und verschiedenen Spurenstoffen sowie den Strömungsprozessen und der Biofilmbildung werden mit dem Ziel durchgeführt, Handlungsempfehlungen für einen sicheren und effizienten Anlagenbetrieb abzuleiten. Die Verbesserung des Prozessverständnisses bildet die Basis für die Vorhersage von Problemen wie Scaling und Korrosion sowie von Verfahren zu ihrer Vermeidung. Die aus den Untersuchungen abzuleitenden Strategien zur Beeinflussung des Biofilmwachstums sollen dazu dienen, Konzept zur Kontrolle der Biofilmbildung und Minderung von Korrosionsprozessen in der obertägigen Anlage, Pumpen und untertägiger Installation zu entwickeln und daraus Empfehlungen für den Schutz der Injektionsbohrung und des Reservoirs abzuleiten. Im Bypass werden in einzelnen Versuchen die Einflüsse verschiedener Parameter, wie Temperatur, Strömungsgeschwindigkeit, Sauerstoffzutritt und Biozide auf die Biofilmbildung an Coupons unterschiedlicher Materialien untersucht. Die Biofilme auf den Coupons werden molekularbiologisch charakterisiert. Die organischen Verbindungen im Biofilm und dessen Isotopenparameter sowie die Scalings werden darüber hinaus analysiert, um eine Verfolgung und Quantifizierung der mikrobiellen Prozesse zu erzielen. Als Maßnahme gegen die Prozessstörungen soll ein Konzept zum aktiven kathodischen Korrosionsschutz erarbeitet werden und in der Großtechnik am Bypass getestet werden.

Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption^Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption, Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption

1. Vorhabenziel Ein Schwerpunkt der nächsten Jahrzehnte bildet die Eisensulfateliminierung aus Bergbauabwässern. Es ist bekannt, dass Chitosan über sehr gute Schwermetallbindungseigenschaften verfügt. Eigene Forschungen zeigten, dass unerwartet hohe Abreinigungsleistungen möglich sind. Gegenwärtig ist der Bindungsmechanismus nicht stöchiometrisch zu erklären, da eine Salzmineralisation durch Chitosan ausgelöst wird. Mit 50 kg Chitosan konnten im Großversuch 500 t Eisenhydroxid bzw. -sulfat gebunden werden. Damit ist ein kostengünstiger Einsatz bei geringer Modifizierung vorhandener Anlagetechnik gegeben. Für die Einführung dieser Technologie werden jedoch bedeutende Mengen an Chitosan benötigt, die aus Importen bereitgestellt werden müssten. Ein Weg, die Wirksamkeit der Flockungsmittel zu erhöhen und den Bedarf an Chitosan zu verringern, ist die Vernetzung/ Co-Polymerisierung von Chitosan. Die aus Bier- und Gärhefen gewonnen Zellwände, welche aus einem Glucan-Chitin-Komplex bestehen, sollen so modifiziert werden, dass sie zur Vernetzung von Chitosanketten geeignet sind und dadurch hochmolekulare Flockungsmittel mit hoher Reaktivität entstehen. Mit diesen soll verhüttbares Eisen aus Tagebauwässern gewonnen werden. Ziel ist die Technologie- und Ausrüstungsentwicklung für die Produktion der Biopolymere und deren Test bei Eisensulfat haltigen Oberflächenwässern. 2. Arbeitsplan 1. Test verschiedener Methoden zur co-polymeren Vernetzung von Chitosan 2. Auswahl geeigneter neuer Materialkombinationen und Untersuchung der Reaktivität 3. Entwicklung eines praktikablen im Großmaßstab umsetzbaren Verfahrens 4. Optimierung der Prozessstufen zur Trennung von huminhaltigen und mineralischen Stoffen sowie Eisensalzen 5. Schmelz- und Verhüttungsversuche 6. Entwicklung einer Pilotanlage zum Zellaufschluss und Herstellung des aktiven Glucan-Chitin-Chitosan-Komplexes.

Transferprojekt zur Verbreitung von Forschungsergebnissen der ETA-Fabrik

Im Projekt 'ETA-Transfer' sollen Erkenntnisse aus dem Vorgängerprojekt 'ETA-Fabrik' bei ausgewählten Unternehmen als Leuchtturmprojekte in der Praxis angewendet werden. Hierbei werden Prozesse der industriellen (Stückgut-)-Produktion zusammen mit dem Gesamtsystem (d.h. des Zusammenwirkens von Maschinenpark, Versorgungstechnik und Gebäudehülle) betrachtet und daraus sinnvolle technische Energieeffizienzmaßnahmen abgeleitet. Die TU Darmstadt wird hierzu in ausgewählten Unternehmen jeweils zuerst Potenzialanalysen durchführen, an die sich dann ebenso begleitete Umsetzungsphasen mit Investitionen in die vorgeschlagenen energieeffizienten Maschinen/Technologien anschließen.

Digitalisierung als Wegbegleiter für die Flexibilisierung in der Energiewirtschaft - enera - Der nächste große Schritt der Energiewende, Teilvorhaben: Flexibilitätsbereitstellung aus Windenergie- und Power-to-Gas-Anlagen sowie Laborerprobung neuer Netzbetriebskonzepte

Für die Felderprobung neuer Netzbetriebskonzepte auf Mittelspannungsebene, die Bereitstellung regionaler Systemdienstleistungen und zur Teilnahme an regionalen Energiemärkten werden Windenergieanlagen für ein flexibles Blindleistungsmanagement umgerüstet und sogenannte STATCOM-Container errichtet. Die Umrüstung der Windenergieanlagen ermöglicht eine wirkleistungsunabhängige Bereitstellung von Blindleistung (STATCOM-Fähigkeit) sowie eine Erweiterung des Blindleistungsstellbereichs (Q+-Aufrüstung). Eine weitere Option zur Kompensation von Spannungsschwankungen bieten STATCOM-Container - auch an Standorten, an denen keine STATCOM-fähigen Windenergieanlagen vorhanden sind. Zur Minimierung wirtschaftlicher Risiken werden die zu untersuchenden Netzbetriebskonzepte vor der Felderprobung im Labor getestet. Dies gilt insbesondere für das Konzept eines 'Intelligenten Dispatcher' sowie für neue Netzregelungskonzepte zur Spannungs-Blindleistungsoptimierung.

Zwanzig20 - futureTEX - VP 67: Aufbau einer smarten kontinuierlichen Fertigungslinie zur Verarbeitung von rezyklierten Hochleistungsfasern zu Organoblechen

Das Gesamtziel des Investitionsvorhabens und des dazugehörigen Forschungsvorhabens besteht im Aufbau einer intelligenten Anlage zur Verarbeitung rezyklierter Hochleistungsfasern unter Integration von Industrie 4.0-Ansätzen in Hightech-Anwendungen. Die Herstellung von Organoblechen auf Basis von Vliesstoffen aus rezyklierter Hochleistungsfasern gibt eine Antwort auf die immer drängender werdende Frage nach der Verarbeitung von Carbonfaserabfall, insbesondere vor dem Hintergrund der drohenden Einstufung von CFK als 'gefährlicher Abfall' und dem damit verbundenen Deponieverbot. Mit dem Investitionsvorhaben werden die technischen Grundlagen für die Durchführung des Forschungsvorhabens geschaffen. Die bisher vorhandene Anlagentechnik wird durch weitere Aggregate sowie Hard- und Software ergänzt, um den Gesamtprozess darstellen und analysieren zu können. Dies beinhaltet: - die Anlagenerweiterung im Bereich der Faservorbereitung und -mischung, um eine kontinuierlich Prozesskette abzubilden - den Aufbau eines Aggregates zur kontinuierlichen, thermischen Konsolidierung der Vliesstoffe zu Organoblechen, - Verarbeitung von Hybridvliesstoffen - Verarbeitung reiner Carbonfaservliesstoffe und separate Zuführung thermoplastischer Matrixwerkstoffe (Folien oder Vliesstoffe) - den Einbau notwendiger Sensortechnik inkl. Auswerteeinheiten zu Qualitätsüberwachung - die Installation von Hard- und Software zur Fertigungs- und Anlagensteuerung.

Optiflex: Optimierung des Betriebs und Designs von Biogasanlagen für eine bedarfsgerechte, flexibilisierte und effiziente Biogasproduktion unter Berücksichtigung der Prozessstabilität als Post-EEG Strategie, Teilvorhaben 3: Weiterentwicklung MPC (modellbasierte prädikative Regelung)

Der Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Da-gegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen bisher vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf ersten funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagen-betrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.

Optiflex: Optimierung des Betriebs und Designs von Biogasanlagen für eine bedarfsgerechte, flexibilisierte und effiziente Biogasproduktion unter Berücksichtigung der Prozessstabilität als Post-EEG Strategie, Teilvorhaben 2: Weiterentwicklung Regelungskonzept

Der weitere Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Dagegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagenbetrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.

Optiflex: Optimierung des Betriebs und Designs von Biogasanlagen für eine bedarfsgerechte, flexibilisierte und effiziente Biogasproduktion unter Berücksichtigung der Prozessstabilität als Post-EEG Strategie, Teilvorhaben 1: Großtechnische Validierung

Der weitere Ausbau des regenerativ bedienten Stromsystems erfordert einen optimierten flexiblen Betrieb der bestehenden und neu zu errichtenden Biogasanlagen. Bisher verfolgte Ansätze zur Flexibilisierung wie die Biomethaneinspeisung, eine Kapazitätserhöhung für Gasspeicher und BHKW oder die Speicherung von Zwischenprodukten zum Beispiel aus der Substratvorbehandlung sind oft durch eine fehlende Wirtschaftlichkeit gekennzeichnet. Dagegen bietet ein optimiertes Substratmanagement in Form einer modellbasierten prädikativen Regelung der Fermenterbeschickung vor allem aus wirtschaftlicher Sicht ein breites Anwendungspotenzial. Infolge fehlender Einbeziehung hydrodynamischer Prozessabläufe in das entwickelte Regelungskonzept erweist sich die technologische Umsetzung dieses Ansatzes derzeit noch als problematisch. Im Rahmen des geplanten Projektes OptiFlex sollen diese bestehenden Grenzen überwunden und eine effiziente und wirtschaftliche Systemlösung für die Post-EEG Zeit für einen stabilen und nachhaltigen flexiblen Anlagenbetrieb entwickelt und unter Praxisbedingungen demonstriert werden. Durch Kopplung einer modellbasierten prädiktiven Regelung zum Fütterungsmanagement mit einer angepassten Regelung der hydrodynamischen Prozessabläufe sollen bisher vorliegende Optimierungsansätze zusammengeführt und weiterentwickelt werden. Aufbauend auf ersten funktionalen Zusammenhängen zwischen den Substrateigenschaften und dem sich ausbildenden Strömungszustand ist ein umfassender Regelalgorithmus für alle zentralen und peripheren Anlagenkomponenten abzuleiten. Neben einer ausrüstungsseitigen Anpassung zielt das Projekt auf die Vorbereitung einer breitenwirksamen MSR-seitigen Nachrüstung bestehender Biogasanlagen als Voraussetzung für einen prozessstabilen, flexiblen Anlagenbetrieb ab. Zu diesem Zweck arbeiten erstmals Partner aus Forschung, Anlagenbau und Prozessautomatisierung gemeinsam an einer umfassenden technischen Lösung für einen optimierten flexibilisierten Anlagenbetrieb.

1 2 3 4 512 13 14