Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.
Das Wattenmeer, das sich von Den Helder in den Niederlanden bis nach Skallingen in Dänemark erstreckt, ist ein Prototyp für eine durch den Meeresspiegelanstieg bedrohte Küstenregion. Über 50% des Wattenmeeres besteht aus Wattflächen, die nur während eines Teils des Gezeitenzyklus von Wasser bedeckt sind. Dadurch wird das einzigartige Küsten-Ökosystem des Wattenmeeres geformt, das aufgrund von Akkumulation von Sediment aus der Nordsee den Meeresspiegelanstieg der letzten Jahrhunderte überleben konnte. Angesichts der beobachteten Beschleunigung des Meeresspiegelanstieges stellt sich die Schlüsselfrage, bis zu welcher Rate des Meeresspiegelanstieges diese Sedimentakkumulation für das Überleben des ausreicht. Diese Frage ist hochkomplex, da die Sedimentflüsse in das Wattenmeer selbst von der Rate des Meeresspiegelanstieges sowie von anderen klimatischen Einflüssen und von der Sedimentverfügbarkeit in nicht-linearer Weise abhängen. Es ist bekannt, dass Netto-Sedimentflüsse durch von nicht-linearen Flachwassergezeiten und horizontalen Dichtegradienten (aufgrund von Niederschlag, Süßwasserabfluss und Oberflächen-Wärmeflüssen) bedingten Gezeitenasymmetrien angetrieben werden. Die Nichtlinearität der Gezeiten wiederum hängt vom Meeresspiegelanstieg selbst ab und die horizontalen Dichtegradienten variieren mit klimabedingten Änderungen von Verdunstung/Niederschlag und Abkühlung/Erwärmung. Weiterhin hängen Sedimentflüsse vom Windantrieb ab, der ebenfalls mit dem Klima variiert. Obwohl ein fundiertes Verständnis der zugrundeliegenden Sedimenttransportprozesse im Wattenmeer vorliegt, werden für Projektionen von morphologischen Veränderungen weiterhin einfache vertikal integrierte Modelle verwendet. Die Erkenntnisse, die aus solchen Modellen gewonnen werden, sind daher sehr eingeschränkt. Das wichtigste Ziel dieses Projektes ist daher, mögliche morphologische Reaktionen des Wattenmeeres auf einen beschleunigten Meeresspiegelanstieg und andere Aspekte des Klimawandels sowie Einflüsse von Sedimentverfügbarkeit mit Hilfe eines prozess-basierten Modells zu untersuchen. Dabei werden die wichtigsten Antriebe für Sedimenttransportprozesse in das Wattenmeer berücksichtigt. Zunächst sollen diese Modellsimulationen in systematischer Weise unter Nutzung verschiedener idealisierter Bathymetern durchgeführt werden, um die kritischsten Prozesse morphodynamischer Veränderungen zu erkennen. Mit Hilfe dieser Bathymeter können die Einflüsse des Meeresspiegelanstieges in Kombination mit anderen Einflussfaktoren (Niederschlag/Verdunstung, Abkühlung/Erwärmung, Wind-Wellenantrieb) untersucht werden. In einer zweiten Phase des SPP, unter der Annahme, dass die verfügbaren Computer Ressourcen weiter anwachsen, sollen solche Simulationen für realistische und komplexere Gezeitenbecken im Wattenmeer durchgeführt werden. In beiden Phasen des SPP soll die Dynamik von Salzwiesen explizit mit untersucht werden.
Die Stabilisierung von organischer Sustanz (OM) und von Nährstoffen im Boden ist an ihre Bindung an Minerale gekoppelt. Mineraloberflächen, im weiteren auch Mineralosphäre genannt, sind Zonen, in denen das Aufeinandertreffen von reaktiven Oberflächen und Bodenmikroorganismen zu komplexen biogeochemische Prozessen und Wechselwirkungen führt. Das Wechselspiel von mikrobieller Besiedlung sowie Sorption bzw. Freisetzung von organischer Substanz und Nährstoffen hat unmittelbare Auswirkungen auf die Speicherung und Verfügbarkeit von Kohlenstoff und Nährstoffen. Die Richtungen und Rückkopplungen der aufgrund von Umwelteinflüssen und Ökosystemfaktoren ablaufenden Entwicklungen sind nur unzureichend verstanden. Mit dem vorgeschlagenen Projekt nutzen wir die einmalige Gelegenheit, dass auf allen Versuchsflächen der Biodiversitäts-Exploratorien frische, unverwitterte Minerale (Illit, ein Tonmineral, und Goethit, ein Eisenoxid) seit 2015 den natürlichen Bodenbedingungen ausgesetzt sind. Auf diesen, durch unterschiedliche Eigenschaften gekennzeichneten Mineraloberflächen, planen wir eine koordinierte, interdisziplinäre Untersuchung der Auswirkungen von Landnutzung und Biodiversität auf die Veränderungen von mikrobiellen Gemeinschaften, der organischen Substanz und von Nährstoffen. Wir vermuten, dass sowohl Art und Intensität der Landnutzung als auch die Biodiversität Einfluss nehmen auf: (1) die Akkumulation und Zusammensetzung mineral-assoziierter organischer Substanz, (2) den Beitrag von Pflanzen und Mikroorganismen zur mineral-assoziierten organischen Substanz, (3) die Zusammensetzung der sich etablierenden mikrobiellen Gemeinschaften, (4) die Stabilität der mineral-assoziierten organischen Substanz, (5) die Nährstoffakkumulation in der Mineralosphäre sowie (6) die Eigenschaften der Mineralosphäre als Funktion der Bodentiefe. Diese Aspekte werden an den exponierten Mineralen sowie in dem sie umgebenden Boden untersucht. Dazu nutzen wir eine Reihe komplementärer, moderner Methoden aus den Bereichen Mineralogie, Biogeochemie, Mikrobiologie und Mikrobieller Ökologie. Folgende Eigenschaften sollen an den Mineralen zu untersucht werden: Oberflächeneigenschaften und der Nährstoffakkumulation, Radiokohlenstoffalter, chemische Zusammensetzung und Stabilität der mineral-assoziierten organischer Substanz, Zusammensetzung der mikrobiellen Gemeinschaft, und Enzymaktivitäten. Unser gemeinschaftlicher Forschungsansatz wird erstmalig detaillierte und umfassende Einblicke in die sich unter unterschiedlichen Umweltbedingungen unter Grünland und Wald entwickelnden Mineralosphären ermöglichen.
Die markierten Standorte sind Schwerpunkte des Sedimenttransportes und der Bodenakkumulation bei Erosionsereignissen infolge von Starkniederschlägen. Übertrittsstellen befinden sich vor allem an Gewässern, Biotopen, baulichen Anlagen etc. Akkumulationsflächen sind häufig am Ende von Abflussbahnen lokaliosiert. Die Übertrittsstellen und Akkumulationsflächen wurden aktenkundig aufgenommen. Orientierende Untersuchungen wurden durchgeführt, um geeignete Maßnahmen zur Gefahrenabwehr, zur Schadensminimierung und Verhinderung vorzuschlagen. Diese Informationen dienen als Grundlage für die Umsetzung von Erosionsschutzmaßnahmen zur Gefahrenabwehr und zur Vermittlung von Vorsorgepflichten zur Vermeidung von Bodenerosionen auf landwirtschaftlich genutzten Flächen.
Methane emissions from inland water bodies are of growing global concern since surveys revealed high emissions from tropical reservoirs and recent studies showed the potential of temperate water bodies. First preliminary studies at the River Saar measured fluxes that exceed estimates used in global budgets by one order of magnitude. In this project we will investigate the fluxes and pathways of methane from the sediment to the surface water and atmosphere at the River Saar. In a process-based approach we will indentify and quantify the relevant environmental conditions controlling the potential accumulation of dissolved methane in the water body and its release to the atmosphere. Field measurements, complemented by laboratory experiments and numerical simulations, will be conducted on spatial scales ranging from the river-basin to individual bubbles. We will further quantify the impact of dissolved methane and bubble fluxes on water quality in terms of dissolved oxygen. Special emphasize will be put on the process of bubble-turbation, i.e. bubble-mediated sediment-water fluxes. The project aims at serving as a reference study for assessing methane emissions from anthropogenically altered river systems.
Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.
Wirkung von Schwermetallen auf die Entwicklung von Algen. Akkumulation in der Algenzelle.
Folgende Arbeiten werden im Institut fuer Chemie (ICH) fortgefuehrt: Fortsetzung der Entwicklung standardisierter Bestimmungsmethoden fuer toxische Metalle (Cd, Pb, Hg, As, Cu, Se, Zn, Ni) in Wasser, Boeden, Nahrungsmitteln, tierischen und menschlichen Organen und Koerperfluessigkeiten im Rahmen internationaler Programme (Cd-Programm, FAO/UN IUPAC). Aufnahme von Untersuchungen und Modellstudien ueber Verteilung, Fluss und Akkumulation toxischer Metalle in ausgewaehlten Umweltmatrices und Biomen. Fortsetzung der Entwicklung simultaner und automatisierter Bestimmungsmethoden fuer toxische Metalle und gaengige Luftverunreinigungen (CO, CO2, SO2, NOx, NH3, H2S, CmHN) fuer die Umweltueberwachung im Rahmen des Programmes der BMFT-Projektgruppe 'Umweltchemikalien und Biozide', sowie fuer die Hoechstmengenverordnung. Fortsetzung der Untersuchungen ueber Gehalt und Verteilung von Anabolika und Oestrogen in Tierfutter, Gewebe und Koerperfluessigkeiten von Schlachtvieh von Pharmazeutika.
Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Origin | Count |
---|---|
Bund | 682 |
Kommune | 2 |
Land | 35 |
Wissenschaft | 11 |
Type | Count |
---|---|
Förderprogramm | 668 |
Messwerte | 2 |
Strukturierter Datensatz | 2 |
Text | 18 |
Umweltprüfung | 1 |
unbekannt | 21 |
License | Count |
---|---|
geschlossen | 19 |
offen | 686 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 596 |
Englisch | 184 |
Resource type | Count |
---|---|
Datei | 2 |
Dokument | 8 |
Keine | 445 |
Webdienst | 7 |
Webseite | 256 |
Topic | Count |
---|---|
Boden | 549 |
Lebewesen & Lebensräume | 607 |
Luft | 438 |
Mensch & Umwelt | 710 |
Wasser | 482 |
Weitere | 693 |