API src

Found 634 results.

Related terms

Wendelberg bei Dobberkau

Besonderes Schutzgebiet Nr. 294 Code: DE 3235-301 Schutzstatus: keiner Neumeldung: 0,55 ha Erläuterungen: Die Neumeldung des FFH-Gebiets wird von der oberen Naturschutzbehörde des Landes Sachsen-Anhalt empfohlen und beruht auf dem zum Zeitpunkt der Erstmeldung noch nicht bekannten Vorkommen der prioritären Lebensraumtypen 6120* (Trockene, kalkreiche Sandrasen) und 6240* (Subpannonische Steppen-Trockenrasen) im betreffenden Gebiet. Es handelt sich um einen der ganz wenigen gut ausgebildeten Xerothermrasenbestände mit Vorkommen beider LRT in der Nordhälfte des Landes Sachsen-Anhalt. Der LRT 6120* weist der in der kontinentalen biogeografischen Region einen ungünstigen Erhaltungszustand („U1“) auf. Insbesondere ist die derzeit eingenommene Fläche zu gering. Es besteht insofern für beide LRT die Verpflichtung gegenüber der EU, einen günstigen Erhaltungszustand dieser LRT wieder herzustellen. Praktikabel ist dies nur durch die Sicherung der verbliebenen Vorkommen einschließlich ihrer Pufferzonen. Der LRT 6240* ist im Natura 2000-Netz bisher unterrepräsentiert. Lebensraumtypen nach Anhang I der FFH-Richtlinie: LRT 6120* - Trockene, kalkreiche Sandrasen LRT 6240* - Subpannonische Steppen-Trockenrasen Schutzziele: Allgemeine Schutz- und Erhaltungsziele für die LRT 6120* und 6240* Erhaltung oder Wiederherstellung eines günstigen Erhaltungszustandes der Lebensraumtypen (LRT) nach Anhang I der FFH-Richtlinie (FFH-RL) einschließlich der für sie charakteristischen Arten sowie der mit ihnen räumlich und funktional verknüpften, regionaltypischen Lebensräume, die für die Erhaltung der ökologischen Funktionsfähigkeit der LRT, des FFH-Gebietes insgesamt sowie für die Erhaltung der Kohärenz des Schutzgebietssystems NATURA 2000 von Bedeutung sind. Dauerhafte Sicherstellung einer beständigen oder sich ausdehnenden Gesamtfläche der Lebensraumtypen. Vermeidung einer aktiven Verschlechterung des Erhaltungszustandes der FFH-LRT sowie eines aktiven Flächenentzuges. Keine erhebliche Verschlechterung des Erhaltungszustandes der FFH-LRT auch durch indirekte Einwirkungen sowie durch Einwirkungen von außen. Vermeidung von erheblichen Beeinträchtigungen der LRT einschließlich ihrer charakteristischen Arten durch Invasion neobiotischer Arten. Gewährleistung günstiger, lebensraumtypischer Strukturen wie z. B. lückige Rasenstrukturen mit partiell vegetationsfreien Offenbodenstellen, randliche thermophile Saumstrukturen als Habitat für die charakteristischen Arten des jeweiligen LRT. Vermeidung von Verbuschung und Bewaldung. Gewährleistung eines hohen Anteiles charakteristischer dikotyler und vor allem konkurrenzschwacher Pflanzenarten sowie der Erhaltung des Vorkommens charakteristischer Kryptogamen. Vermeidung von erheblichen Beeinträchtigungen durch Brache- und Ruderalisierungszeiger, auch von dominanzbildenden charakteristischen Grasarten sowie durch Akkumulation abgestorbener organischer Substanz. Vermeidung von erheblichen Beeinträchtigungen durch eutrophierende Einflüsse Gewährleistung günstiger, lebensraumtypischer Strukturen als Habitat für die charakteristischen Arten des jeweiligen LRT, Erhaltung der Bodenstruktur und Oberflächenmorphologie zur Förderung insbesondere konkurrenzschwacher Arten und charakteristischer Kryptogamen. Gebietsspezifische Schutzziele Erhaltung des gehölzarmen Moränenhügels einschließlich seines Nahumfeldes mit einem natürlichen Mosaik unterschiedlicher, insgesamt jedoch mehr oder weniger nährstoffarmer und trockener Standorte Vermeidung von Zerstörung oder sonstiger erheblicher Beeinträchtigung durch unverträgliche Nutzungsformen Meldekarte (PDF) LRT-Karte (PDF) Letzte Aktualisierung: 14.04.2021

Organischer Kohlenstoff in Flüssen - Charakterisierung, Herkunft und Abbaubarkeit

Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)

Akkumulation und Abbau polyzyklischer aromatischer Kohlenwasserstoffe in Zellen

Viele polyzyklische aromatische Kohlenwasserstoffe sind krebserregend. Einige dieser kanzerogenen Kohlenwasserstoffe sind in unserer Umwelt allgegenwaertig, z.B. Benzpyren. Der Wirkungsmechanismus dieser Kohlenwasserstoffe im Organismus ist noch nicht vollstaendig aufgeklaert. Hier wird versucht, durch mikroskop-fluoreszenz-spektralphotometrische Messungen an lebenden Zellen Information ueber die Verteilung des Kohlenwasserstoffs und bestimmter Abbauprodukte innerhalb der Zelle zu erhalten.

Vergangene und zukünftige Entwicklung der Eismassen auf Svalbard - Klimaantrieb und Telekonnektionen

Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Feuerinduzierte Elementumverteilung und -verluste in der Verwitterungszone

Das Extremereignis Feuer gilt als zentraler geomorphologischer Faktor, da es in kürzester Zeit zu wesentlichen Verlusten der Nähr- und Ballastelemente aus Ökosystemen führt. Feuer in (semi-)ariden, mediterranen und semihumiden Waldökosystemen verursachen dramatische Umverteilungen und Verluste von allen Elementen, die zuvor von Mikroorganismen im Saprolit mobilisiert und durch die Vegetation an die Oberfläche transportiert wurden. In der 1. Projektphase wurde die durch Wurzelkohlenstoff induzierte mikrobielle Elementmobilisierung sowie die pflanzliche Nährstoffaufnahme aus Boden und Saprolit untersucht. In der 2. Phase werden Elementverluste durch Feuer in Interaktion mit den Brandeffekten auf mikrobielle Gemeinschaften und deren Funktionen aufgeklärt. Nach kontrollierten Bränden und in natürlichen Brandchronosequenzen werden die aus Boden und Saprolit mobilisierten Elementpools bestimmt und die Gehalte verfügbarer Nährstoffe und Balastelemente ermittelt. Elementverluste durch Auswaschung und Erosion werden mittels Tracern für N, K, Ca und Si quantifiziert. Die fatalen Effekte von Feuer auf mikrobielle Gemeinschaften und Funktionen werden durch die relative Häufigkeit von symbiotischen und saprotrophen Pilzphyla, diazotrophen Organismen, Phospholipidfettsäuren (PLFA) sowie Enzymaktivitäten im Oberboden untersucht. Die mikrobielle Sukzession nach Brand wird mit Fokus auf stresstolerante und mineralverwitternde Pilze erforscht. Die Klärung der funktionellen Rolle von Pilzen und Bakterien wird durch den Vergleich der qPCR-Analyse mit Hochdurchsatzsequenzierung unterstützt. Besonderer Fokus liegt auf den Pilzen, welche unter aeroben Bedingungen an Gesteinsoberflächen und an der Wurzel-Boden-Grenzfläche Nährstoffe mobilisieren. Stresstolerante Pilze (i) bilden direkten Kontakt mit Mineralien, fördern die chemische Verwitterung von Nährstoffen aus Primärmineralien und (ii) können die Wiederbesiedlung des kahlen Bodens nach Feuer beschleunigen. Die kurz- und mittelfristige Sukzession mikrobieller Gemeinschaften wird mit der zu erfassenden Zunahme der Enzymaktivitäten und der Mobilisierung und Akkumulation der Nährstoffe im Oberboden verglichen. Alle Studien werden entlang des Klimagradienten von Pan de Azucar nach Nahuelbuta durchgeführt, um Niederschlagseffekte auf die absoluten und relativen Verluste von Nährstoffen und Ballastelementen nach Feuer sowie auf die Erholung der Ökosysteme aufzuklären. Die Ergebnisse der 1. Phase ermöglichen die Verallgemeinerung der Nährstoffkreisläufe stabiler Ökosysteme im Fließgleichgewicht. Die Ergebnisse der 2. Phase erlauben die Generalisierung der Folgen des Extremereignisses Feuer auf Elementverluste und nachfolgende Remobilisierung durch Verwitterung im Verlauf der Sukzession. Da die Aridisierung und damit die Feuerhäufigkeit weltweit zunehmen, ist die aus diesem Projekt erwartete Vorhersage ökosystemarer Nährstoffverlusten und die Konsequenzen für eine verstärkte Verwitterung von globaler Relevanz.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Zur Temperatur-abhängigen Kontrolle des Blühzeitpunkts durch den Gibberellin-Signalweg und Interaktionen zwischen DELLA Proteinen und APETALA1/VRN1 MADS-Box-Faktoren

Die Temperatur ist ein wichtiger Umweltreiz für die Kontrolle des Blühzeitpunkts bei Pflanzen. In Arabidopsis bewirkt Kälte eine Verzögerung des Wachstums und der Blühinduktion und auf molekularer Ebene führt Kälte zur Akkumulation von DELLA Proteinen, zentralen Repressoren des Wachstums und der Blühinduktion aus dem Gibberellin (GA)-Signalweg. Die DELLA-Abundanz reagiert ziemlich rasch auf Veränderungen der Temperatur und die Effekte der DELLA-Akkumulation können durch GA (Behandlungen) wieder aufgehoben werden. Wir haben kürzlich gezeigt, dass der Arabidopsis MADS-Box Transkriptionsfaktor APETALA1 (AP1) durch direkte Interaktionen mit DELLA Proteinen reprimiert wird. Des Weiteren haben wir Hinweise darauf, dass erhöhte Mengen an AP1 Expression auf molekularer Ebene für die frühe Blüte zweier Arabidopsis-Accessionen in kalten Temperaturen sind. Wir möchten nun die Hypothese testen, dass die erhöhten Mengen an AP1 die inhibitorischen Effekte der DELLA Repressoren in kalten Temperaturen aufheben. Zweitens möchten wir testen, ob das AP1-DELLA regulatorische Modul auch in Getreiden konserviert ist. Bei der Gerste und im Weizen sind die VERNALIZATION1 (VRN1) Proteine, die nächsten Orthologen von Arabidopsis AP1, zentrale Regulatoren der Blühinduktion. Wir möchten daher testen, ob VRN1 aus der Gerste und dem Weizen auch mit den DELLA Proteinen aus diesen beiden Species interagieren können und ob die Kontrolle des Blühzeitpunkts in Antwort auf Temperatur und GA von dieser Interaktion abhängig ist.

Antimikrobielle Self-Assembling-Systeme zur Gewährleistung einer nachhaltigen Oberflächenhygiene

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Transport, Abtragung und Akkumulation von Sedimenten numerisch simuliert für Paleo-Ozeane und rekonstruiert von Bohrkernen der Eirik Drift (TRANSPORTED)

Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.

Bildung partikulärer organischer Masse in Wolken: Kammer- und Laborstudien, Mechanismen, Modellierung und Integration

Labor- und Feldstudien zeigen, dass chemische Prozesse in Wolken zur organischen Aerosolpartikelmasse beitragen. Aus der HCCT-2010-Feldstudie und der CUMULUS-Kammerstudie geht hervor, dass die organische Massenproduktion beträchtlich sein kann und diese von der Konzentration der organischen Vorläuferverbindungen in der Gasphase abhängt. Es bestehen jedoch große Unsicherheiten, bei der Art der resultierenden Aerosolpartikel, welche metastabil sein können und einen Teil ihrer organischen Masse während der Evaporation der Wolkentropfen wieder verlieren. Ziel des Projekts PARAMOUNT ist die Untersuchung der Chemie in Wolkentropfen, welche organische Wolkeninhaltsstoffe prozessiert und zur Bildung organischer Aerosolpartikelmasse beiträgt. PARAMOUNT ist auf die Untersuchung der Multiphasenchemie relevanter Vorläuferverbindungen wie polyfunktioneller Carbonyle und Säuren fokussiert. Mit diesen Verbindungen sollen kombinierte Labor- und CESAM-Kammerstudien zur Multiphasenchemie durchgeführt werden. Dabei sollen die Untersuchung der Reaktionskinetik und der Produktverteilung in der wässrigen Phase zur Reaktionsmechanismusformulierung als Grundlage dienen. Die CESAM-Experimente stehen im Mittelpunkt des PARAMOUNT-Projektes und konzentrieren sich hauptsächlich auf die Untersuchung der organischen Masseproduktion durch chemische Wolkenprozesse. Zur Untersuchung der organischen Massenproduktion unter variierenden Umweltbedingungen werden die CESAM Kammerstudien mit verschiedenen Anfangsbedingungen durchgeführt. Die organische Massenzunahme soll während der künstlichen Wolkenepisoden in der CESAM-Kammer mit neusten analytischen Methoden untersucht werden. Ferner sollen mögliche Anreicherungen von organischen Carbonylverbindungen, welche in Feldproben während der Wolkenfeldmesskampagne HCCT-2010 beobachtet wurden, eruiert werden. Zwei Aerosol-Massenspektrometer dienen der Online-Bestimmung der organischen Aerosolfraktion. Des Weiteren erfolgt die Analyse prozessierter interstitieller Gasphasenverbindungen und deren Partitionierungverhalten zwischen Gas- und Flüssigphase unter Verwendung eines PTR-MS und eines mini CVI (counter virtual impactor) in Kombination mit Offline-Analytik.Abschließend werden die CESAM-Experimente mit dem komplexen MCM / CAPRAM Multiphasenchemiemechanismus modelliert. Die verknüpfte Modellierung soll den auf den experimentellen Ergebnissen basierenden Mechanismus validieren und die Interpretation der Kammermessungen unterstützen. Insgesamt stellt das hier vorgeschlagene Projekt PARAMOUNT einen wissenschaftlichen Durchbruch für das Verständnis von chemischen Wolkenprozessen dar, sowie deren Bedeutung für die Produktion von sekundärem organischem Aerosol.

Dachpappenfabrik Oberschöneweide

Der Standort in der Wilhelminenhofstraße wurde im Zeitraum 1894 bis 1945 durch die teerverarbeitende Industrie zur Produktion von Dachpappe, Asphalt und anderen Mineralölprodukten genutzt. Seit 1961 fand die Ansiedlung von Mischgewerbe statt (z.B. Kfz-Werkstätten, Reifenhandel, Malerlager). Nach 1990 wurde das Gelände durch die Karl-Unternehmensgruppe übernommen. Als Folge von Kriegseinwirkungen, Havarien, Leckagen und Handhabungsverlusten ist eine massive Verunreinigung der Umweltkompartimente Boden und Grundwasser durch flüssige Teerphase [polyzyklische aromatische Kohlenwasserstoffe (PAK)] erfolgt. Die Schwerphase ist gravitativ in den 1. unbedeckten Aquifer eingedrungen und hat sich auf der Oberfläche des folgenden Geringleiters (Geschiebemergel) ausgebreitet. Daneben konnte auch eine flächenhafte Verbreitung der Verunreinigung in der ungesättigten Bodenzone ermittelt werden. Bedingt durch die Lage im Anstrom der Fassungen des Wasserwerks Wuhlheide und die damit verbundene Gefährdung der Trinkwassergewinnung wurden seit 1992 erste Erkundungsmaßnahmen umgesetzt (Boden, Bodenluft, Grundwasser). Dabei wurden im Grundwasser bereits früh Belastungen durch PAK, BTEX, NSO-Heterozyklen (ein- oder mehrkernige zyklische Kohlenwasserstoffverbindungen, in denen mindestens ein Kohlenstoff-Ringatom durch Stickstoff, Schwefel oder Sauerstoff ersetzt ist) und Mineralölkohlenwasserstoffe (MKW) nachgewiesen. Zur weiteren Eingrenzung der Schadstoffverbreitung und zur Beurteilung der Gefährdungssituation wurde seit 2002 im Rahmen mehrerer Kampagnen ein Netz aus 15 Messstellengruppen mit insgesamt 22 Einzelpegeln eingerichtet. In den Jahren 2003/2004 wurde anhand einer intensiven historischen Erkundung die Lokalisierung der Lage von Anlagenteilen wie z. B. Teerbecken, Rohrleitungen und Rührwerken vorgenommen. In diesem Zusammenhang ist auch eine Bestandsaufnahme sämtlicher Gebäudeteile einschließlich der Öffnung verschlossener Bauteile erfolgt. In 2011 wurden die Untersuchungen durch die rechnerische Modellierung der Staueroberfläche ergänzt, um Bereiche (Senken) auszukartieren, in denen eine Akkumulation der Schwerphase zu erwarten war. Als sanierungsvorbereitende Arbeiten wurde in 2010 zunächst der gesamte Gebäudebestand (26.300 m³ umbauter Raum) zurückgebaut. In 2011 sind die Rückbauarbeiten mit der Beseitigung der Teerbecken und der Tiefenenttrümmerung des Untergrundes auf dem Gesamtareal fortgesetzt worden. Dabei erfolgte bereits auch der Voraushub für die anschließende Bodensanierung. Ab 2012 wurden dann die Arbeiten für den Bodenaustausch bis ca. 11 m unter Geländeoberkante aufgenommen. In dem zentralen Grundstücksbereich wurde der belastete Boden an 256 Bohransatzpunkten im Wabenverfahren entnommen und durch sauberen Füllboden (LAGA Z0) ersetzt. Zum Schutz der Nachbarbebauung mussten die Bohrungen im randlichen Sanierungsbereich als Großlochbohrungen ausgeführt werden. Neben dem Bodenaustausch im hochbelasteten Bereich erfolgte über die unmittelbare Gefahrenabwehr hinaus auch auf dem restlichen Grundstück auf Initiative und Kosten des Grundstückseigentümers die komplette Tiefenenttrümmerung (Abbruch der unterirdischen Bauten) und ein Austausch der oberen Bodenschicht. Bei der Beseitigung des Teerbeckens, der Tiefenenttrümmerung und des Voraushubs wurden 5.600 t gefährliche Abfälle (>LAGA Z2) entsorgt (zusätzlich 200 t Teere). Durch den anschließenden Bodenaustausch mit dem Wabenverfahren und den Großlochbohrungen wurden weitere 28.700 t an kontaminiertem Material aus dem Untergrund entfernt. Zur Erfassung der im Grundwasser gelösten Schadstoffe und Verhinderung eines Abstroms in Richtung der Wasserfassungen des Wasserwerks Wuhlheide wurde in 2012 eine hydraulische Sicherungs-/ Sanierungsmaßnahme mit Förderung von Grundwasser aus 2 Brunnen aufgenommen. Dadurch sollte auch die Schadstofffracht ausgetragen werden, die durch den Einfluss der Bodensanierung (Energieeintrag durch Erschütterungen) mobilisiert wurde. Gleichzeitig diente die GWRA während der Bodensanierung der Reinigung des Auflastwassers sowie des Wassers aus den Entwässerungscontainern. Die hydraulische Sicherungs-/ Sanierungsmaßnahme (Grundwasserförderung) wurde bis Ende April 2016 fortgeführt. Weiterhin wird die Grundwasserbeschaffenheit durch ein Grundwassermonitoring als Nachsorgemaßnahme mit halbjährlichen Beprobungskampagnen überprüft. Die Gesamtkosten der Sanierung belaufen sich bis Ende 2018 auf 4,2 Mio. €, wobei der weit überwiegende Anteil der Aufwendungen durch die Maßnahmen zur Bodensanierung verursacht wurde. Im Jahr 2013 ist die Neubebauung der sanierten Fläche abgeschlossen worden. Seitdem wird das Grundstück wieder gewerblich genutzt (u. a. Futterhandel, Kfz-Werkstatt).

1 2 3 4 562 63 64