API src

Found 2838 results.

Similar terms

s/anriss/Abriss/gi

Antrag auf Genehmigung gemäß § 16b BImSchG zur Errichtung und Betrieb von einer Windenergieanlage (An070) und dem Rückbau von vier Bestandsanlagen (Repowering) in der Gemeinde Anröchte – Effeln, Az.: 20240681

Die Firma SkyPower Windenergie e.K., Linkstraße 27b in 59519 Möhnesee-Delecke hat mit einem Antrag vom 29.08.2024, eingegangen am 30.08.2024, eine Genehmigung gem. § 16b BImSchG zur Errichtung und Betrieb für eine Windenergieanlage (An070) und dem Rückbau von vier Bestandsanlagen (Repowering) auf dem Gebiet der Gemeinde Anröchte beantragt. Die beantragte Anlage fällt aufgrund der kumulierenden Wirkung § 10 UVPG mit mehr als 2 weiteren Windenergieanlagen in der Konzentrationszone „Effeln-Süd“ unter die Vorprüfungspflicht des UVPG. Der Antragsteller hat die Durchführung einer Umweltverträglichkeitsprüfung gemäß § 7 Abs. 3 UVPG beantragt. Der Kreis Soest als zuständige Behörde erachtet dies aufgrund potentieller Umweltauswirkungen als zweckmäßig, daher kann die Vorprüfung entfallen und es wird direkt eine Umweltverträglichkeitsprüfung (UVP) durchgeführt.

Entwicklung DIN-SPEC 35808 Wuchshülle-Wald, Etablierung - Validierung - Finalisierung, Teilvorhaben 1: Koordination und Finalisierung Normdokument

Remanufacturing von PEM-Brennstoffzellenstacks für eine nachhaltige Kreislaufwirtschaft, Teilvorhaben: Forschung und Technologietransfer

Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen. Der Fokus des wbks liegt einem Demonstrator für die automatisierte Demontage unter Berücksichtigung der genannten Herausforderungen. Der Demonstrator bildet Aspekte der Handhabung und Qualitätssicherung ab und ist für verschiedene Stackdesigns befähigt.

Remanufacturing von PEM-Brennstoffzellenstacks für eine nachhaltige Kreislaufwirtschaft

Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.

Entwicklung und Bewertung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit

Das Ziel des Vorhabens ist die Entwicklung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit. Die Projektziele werden durch ein interdisziplinäres Konsortium in Zusammenarbeit mit zwei Industriepartnern der Holzbaubranche bearbeitet. Auf Gebäudeebene werden die Potentiale der kreislaufgerechten Konstruktion als Beitrag zum anpassungsfähigen und nutzungsflexiblen Holzbau ermittelt. Auf baukonstruktiver, d. h. Bauteilebene, erfolgt die Entwicklung und Optimierung von kreislaufgerechten Holztafelbaukonstruktionen, unter Berücksichtigung der jeweiligen Anwendung (d. h. Wand-, Dach-, Deckenelement). Bei der technischen Entwicklung werden in der Anbindung zur Gebäudeebene die Verbindungen zwischen Bauteilen mit dem Ziel der Demontierbarkeit betrachtet. Nach unten ist die Trennbarkeit der Bauteile bis auf Materialebene als Ziel definiert. Auf Materialebene wird die Kaskadennutzung als zentrales Element der Kreislaufwirtschaft aufgegriffen. Die Charakterisierung der Verwertungsoptionen des Gebrauchtholzes auf Materialebene trägt dazu bei, dass das Gebrauchtholz nach dem Rückbau der kreislaufgerechten Konstruktion auch tatsächlich einer hochwertigen Kaskadennutzung zugeführt werden kann und stellt damit eine wichtige, interne Validierung der technischen Entwicklungen dar. Gleichzeitig ergibt sich daraus die notwendige Einbindung digitaler Technologien zur Entwicklung eines digitalen Materialpasses für die Dokumentation und Nachverfolgbarkeit von Bauteilen, Verbindungen und Rückbauoptionen. Neben der technischen und materialwissenschaftlichen Bewertung findet eine Evaluierung der ökologischen und ökonomischen Effekte der entwickelten kreislaufgerechten Konstruktionen mit Hilfe von Lebenszyklusanalysen statt. Die Betrachtung von innovativen Wirtschaftskonzepten wie Leasing- oder Sharingmmodellen aus der Circular Economy bildet einen Blick in die Zukunft des modernen Holzbaus.

Entwicklung und Bewertung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit, Teilvorhaben 1: Eigenschaften und Verwendbarkeit von Gebrauchtholz im Holztafelbau

Das Ziel des Vorhabens ist die Entwicklung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit. Die Projektziele werden durch ein interdisziplinäres Konsortium in Zusammenarbeit mit zwei Industriepartnern der Holzbaubranche bearbeitet. Auf Gebäudeebene werden die Potentiale der kreislaufgerechten Konstruktion als Beitrag zum anpassungsfähigen und nutzungsflexiblen Holzbau ermittelt. Auf baukonstruktiver, d. h. Bauteilebene, erfolgt die Entwicklung und Optimierung von kreislaufgerechten Holztafelbaukonstruktionen, unter Berücksichtigung der jeweiligen Anwendung (d. h. Wand-, Dach-, Deckenelement). Bei der technischen Entwicklung werden in der Anbindung zur Gebäudeebene die Verbindungen zwischen Bauteilen mit dem Ziel der Demontierbarkeit betrachtet. Nach unten ist die Trennbarkeit der Bauteile bis auf Materialebene als Ziel definiert. Auf Materialebene wird die Kaskadennutzung als zentrales Element der Kreislaufwirtschaft aufgegriffen. Die Charakterisierung der Verwertungsoptionen des Gebrauchtholzes auf Materialebene trägt dazu bei, dass das Gebrauchtholz nach dem Rückbau der kreislaufgerechten Konstruktion auch tatsächlich einer hochwertigen Kaskadennutzung zugeführt werden kann und stellt damit eine wichtige, interne Validierung der technischen Entwicklungen dar. Gleichzeitig ergibt sich daraus die notwendige Einbindung digitaler Technologien zur Entwicklung eines digitalen Materialpasses für die Dokumentation und Nachverfolgbarkeit von Bauteilen, Verbindungen und Rückbauoptionen. Neben der technischen und materialwissenschaftlichen Bewertung findet eine Evaluierung der ökologischen und ökonomischen Effekte der entwickelten kreislaufgerechten Konstruktionen mit Hilfe von Lebenszyklusanalysen statt. Die Betrachtung von innovativen Wirtschaftskonzepten wie Leasing- oder Sharingmmodellen aus der Circular Economy bildet einen Blick in die Zukunft des modernen Holzbaus.

Entwicklung und Bewertung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit, Teilvorhaben 4: Entwicklung eines blockchainbasierten Materialpasses

Das Ziel des Vorhabens ist die Entwicklung von kreislaufgerechten Holztafelbaukonstruktionen unter der Prämisse einer technischen, ökonomischen und ökologischen Realisierbarkeit. Die Projektziele werden durch ein interdisziplinäres Konsortium in Zusammenarbeit mit zwei Industriepartnern der Holzbaubranche bearbeitet. Auf Gebäudeebene werden die Potentiale der kreislaufgerechten Konstruktion als Beitrag zum anpassungsfähigen und nutzungsflexiblen Holzbau ermittelt. Auf baukonstruktiver, d. h. Bauteilebene, erfolgt die Entwicklung und Optimierung von kreislaufgerechten Holztafelbaukonstruktionen, unter Berücksichtigung der jeweiligen Anwendung (d. h. Wand-, Dach-, Deckenelement). Bei der technischen Entwicklung werden in der Anbindung zur Gebäudeebene die Verbindungen zwischen Bauteilen mit dem Ziel der Demontierbarkeit betrachtet. Nach unten ist die Trennbarkeit der Bauteile bis auf Materialebene als Ziel definiert. Auf Materialebene wird die Kaskadennutzung als zentrales Element der Kreislaufwirtschaft aufgegriffen. Die Charakterisierung der Verwertungsoptionen des Gebrauchtholzes auf Materialebene trägt dazu bei, dass das Gebrauchtholz nach dem Rückbau der kreislaufgerechten Konstruktion auch tatsächlich einer hochwertigen Kaskadennutzung zugeführt werden kann und stellt damit eine wichtige, interne Validierung der technischen Entwicklungen dar. Gleichzeitig ergibt sich daraus die notwendige Einbindung digitaler Technologien zur Entwicklung eines digitalen Materialpasses für die Dokumentation und Nachverfolgbarkeit von Bauteilen, Verbindungen und Rückbauoptionen. Neben der technischen und materialwissenschaftlichen Bewertung findet eine Evaluierung der ökologischen und ökonomischen Effekte der entwickelten kreislaufgerechten Konstruktionen mit Hilfe von Lebenszyklusanalysen statt. Die Betrachtung von innovativen Wirtschaftskonzepten wie Leasing- oder Sharingmmodellen aus der Circular Economy bildet einen Blick in die Zukunft des modernen Holzbaus.

WIR! - rECOmine - TEVLiS, TP2: Bewertung der Potenziale der Aufbereitung von verwertbaren Si-Salzverbindungen aus Glimmerkonzentraten

Direktrecycling von Lithium-Eisenphosphat-Batterien mithilfe eine optimierten Schwarzmasse-Gewinnung, DiLiRec - Direktrecycling von Lithium-Eisenphosphat-Batterien mithilfe eine optimierten Schwarzmasse-Gewinnung

Quartier für Quartier - Alternativen zum Erdgas und die Zukunft der Gasverteilnetze im Rahmen der kommunalen Wärmewende, Teilvorhaben: Regulatorische Analyse der Umsetzung der Wärmewende im Quartier

1 2 3 4 5282 283 284