Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
In dem Datensatz aus Karte 3 des Niedersächsischen Landschaftsprogramms sind die Landschaftsbildräume enthalten. Das Landschaftsbild in Niedersachsen wird bestimmt von zahlreichen natürlichen und anthropogenen Faktoren, von denen u.a. folgende zur Abgrenzung der Landschaftsbildräume herangezogen wurden: Naturräume, Geomorphologie und Reliefeigenschaften sowie Flächennutzungen. Die Bewertung der Landschaftsbildräume nach ihrer Eigenart berücksichtigt die Kriterien Natürlichkeit, historische Kontinuität und Vielfalt sowie zusätzlich den Aspekt der Raumwahrnehmung, um die ausgeprägte Eigenart von strukturarmen Landschaftsbildräumen, z. B. in der Marsch und in der Börde, im landesweiten Kontext angemessen zu berücksichtigen. Karte 3 „Schutzgut Landschaftsbild“ stellt die aus landesweiter Sicht bedeutsamen Aspekte für das Schutzgut Landschaftsbild dar. Neben der Darstellung der kulturlandschaftlichen Gliederung und historischen Kulturlandschaften landesweiter Bedeutung werden weitere Bereiche mit einer hohen Bedeutung für das Landschaftsbild sowie Infrastruktur für die landschaftsgebundene Erholung (Naturparke, zertifizierte Wanderwege, Fernradwege mit überregionaler Bedeutung und Kanustrecken) kartografisch dargestellt. Nutzungsbeschränkung: Geometrien sind auf Grundlage der Digitalen Topografischen Karte 1:500.000 (DTK500) aussagekräftig. Quellennachweis: © 2021, daten@nlwkn.niedersachsen.de
Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.
Untersuchungen ueber Algenflora und -vegetation von ausgewaehlten, unterschiedlichen Lebensraeumen Europas, die bisher meist nur unvollstaendig bekannt sind, liefern u.a. auch die Voraussetzungen, um Veraenderungen in den Biozoenosen (insbesondere bei anthropogener Beeinflussung der Standorte) sicherer zu beurteilen und entsprechende Massnahmen zu begruenden (z.B. im Hinblick auf die Verbesserung der Wasserqualitaet, die Erhaltung von Schutzgebieten). Ein Teil der Untersuchungen beruecksichtigt besonders die Feinstruktur von Diatomeenschalen in Abhaengigkeit von den Standortfaktoren. Damit soll u.a. ein Beitrag zur genaueren Kenntnis von Indikatorarten (z.B. fuer die Wasserverschmutzung) geleistet werden.
Ziel ist es, die räumliche Verteilung und zeitliche Variabilität der Niederschlagsaktivität, der Niederschlagsmenge und der Verdunstung, des atmosphärischen Stoffeintrags, bedingt durch biogene und anthropogene Emissionen, der bestimmenden meteorologischen Parameter wie Wolkenbedeckungsgrad und -typ, Temperatur, Wind und turbulente Flüssein der planetaren Grenzschicht für zukünftige Zeiträume abzuschätzen, die durch den globalen Wandel und durch regionale Veränderungen bedingt sind. Die Ergebnisse dienen als Randbedingungen für hydrologische Modelluntersuchungen zum Wasserkreislauf und zur ökonomischen und ökologischen Bewertung der absehbaren oder angestrebten regionalen Entwicklung der Wasserbevorratung und -bewirtschaftung im mittleren Elbebereich. Die zu erwartenden Klimaänderungen sollen exemplarisch innerhalb der Zeiträume 2000 bis 2025 (Prognoseziel I) und 2026 bis 2050 (Prognoseziel II) beschrieben werden. Dabei soll in entsprechenden Szenarien der Strukturwandel im Elbe-, Havel-, Spree- und Unstrutraum berücksichtigt werden, der in dem gegebenen Zeitrahmen politisch, ökonomisch und ökologisch zu erwarten ist. Die absehbaren Veränderungen werden in kategorisierter Bodennutzung und in Schadstoffemissionskatastern festgehalten. Teilvorhaben: Bestimmung von Großwetterlagen und dynamischen Kenngrößen zur Klimacharakterisierung; Episodenrechnungen mit dem Lokalmodell des Deutschen Wetterdienstes; Synthese und Analyse von Wolkenarten, Niederschlag und Verdunstung aus Zeitreihen von Satellitenmessungen und konventionellen Beobachtungen; Nutzungszugang zu langjährigen Fernerkundungsdaten durch alle GLOWA-Projekte; Diagnose und Prognose der Deposition mit einem chemischen Transportmodell.
In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.
(1) Terrestrische Biota der Antarktis sind durch geografische Isolation und inselhafte Verteilung geprägt. Die isolierte Lage der Antarktis und die Beschränkung auf weit voneinander entfernte kleine Habitatflecken haben zu einem hohen Endemiten-Anteil und einer starken Regionalisierung der Fauna und Flora geführt. Genetische Differenzierung, lokale Anpassung und die Evolution kryptischer Arten sind die Folge. Die Biodiversitäts-Konvention (CBD) betrachtet genetische Diversität als einen Eckpfeiler biologischer Vielfalt und stellt sie damit in eine Reihe mit der Diversität von Arten und Ökosystemen. Durch Einschleppung ortsfremder Arten und Homogenisierung bislang getrennter Genpools bedroht der Mensch jedoch zunehmend diese Isolation und genetische Differenzierung vieler antarktischer Biota. (2) Obwohl Flechten als wichtigste Primärproduzenten antarktische terrestrische Lebensräume dominieren, fehlen zurzeit Daten zu ihrer genetischen Struktur und Diversität. Der Umfang inter- und intrakontinentalen Genflusses ist bisher völlig unbekannt. Es ist deswegen derzeit unmöglich, den aktuellen und zukünftigen menschlichen Einfluss auf antarktische Flechtenpopulationen auch nur annähernd abzuschätzen.(3) Wir schlagen vor, mittels molekulargenetischer Daten die populationsgenetische Struktur von sechs weit verbreiteten Flechtenarten mit unterschiedlichen Ausbreitungsstrategien zu untersuchen. Dabei soll die Nullhypothese überprüft werden, dass Flechtenpopulationen genetisch nicht differenziert sind. Zusätzlich wollen wir abschätzen, ob menschliche Aktivitäten zur Einschleppung ortsfremder Arten oder Genotypen und zur Homogenisierung von Genpools beitragen. Hierfür sollen Lokalitäten mit hohem und niedrigem menschlichen Einfluss verglichen werden. Das Projekt schafft damit unverzichtbare Grunddaten für die Entwicklung von Schutzstrategien in der Antarktis.
Wasserinjektion oder Baggerung zur Sedimententnahme in Häfen
Bodenqualität ist die Gesamtheit der natürlichen Bodenfunktionen einschließlich der Archivfunktion, die durch anthropogene Einflüsse unterschiedlich stark gemindert sind (Bodenschutzkonzept Stuttgart 2006). Maßgeblich für die Beurteilung der Bodenqualität sind die Bodenfunktionen nach § 2 Abs. 2 des Bundesbodenschutzgesetzes (BBodSchG 1998). Die Funktionsbewertung erfolgt nach dem Bodenbewertungsinstrument Sachsen (LfULG 2022), die Bewertung der anthropogenen Belastungen in Anlehnung an das Bodenschutzkonzept Stuttgart (2006). Dazu werden vor allem Versiegelung, Deponien, Aufschüttungen, Abgrabungen und Trümmerschuttflächen berücksichtigt. Der Versiegelungsgrad entstammt der erweiterten Blockkarte Dresdens.
| Origin | Count |
|---|---|
| Bund | 3757 |
| Kommune | 5 |
| Land | 442 |
| Schutzgebiete | 8 |
| Wirtschaft | 1 |
| Wissenschaft | 26 |
| Zivilgesellschaft | 7 |
| Type | Count |
|---|---|
| Bildmaterial | 4 |
| Chemische Verbindung | 3 |
| Daten und Messstellen | 13 |
| Ereignis | 10 |
| Förderprogramm | 3030 |
| Kartendienst | 3 |
| Lehrmaterial | 2 |
| Software | 1 |
| Taxon | 5 |
| Text | 321 |
| Umweltprüfung | 19 |
| WRRL-Maßnahme | 482 |
| unbekannt | 222 |
| License | Count |
|---|---|
| geschlossen | 404 |
| offen | 3673 |
| unbekannt | 33 |
| Language | Count |
|---|---|
| Deutsch | 3675 |
| Englisch | 1292 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 32 |
| Bild | 45 |
| Datei | 33 |
| Dokument | 232 |
| Keine | 2776 |
| Multimedia | 1 |
| Unbekannt | 13 |
| Webdienst | 65 |
| Webseite | 1120 |
| Topic | Count |
|---|---|
| Boden | 3010 |
| Lebewesen und Lebensräume | 4110 |
| Luft | 2604 |
| Mensch und Umwelt | 4110 |
| Wasser | 2928 |
| Weitere | 3663 |